Skip to main content

Mammalian sex determination: what we have learnt from a chromosomal design fault

  • Chapter
Chromosomes Today
  • 164 Accesses

Abstract

The nature of differences between males and females, and how these differences arise, have always held a deep fascination for artists, philosophers and scientists. From the study of genetically accessible organisms such as Drosophila melanogaster and Caenorhabditis elegans, it is commonly accepted that sex determination in mammals involves pathways of gene regulation, and that the choice of pathway is dependent on a switch mechanism. Understanding mammalian sex determination at the molecular level relies on isolating and studying all the genes in these pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Affara, N.A. et al. (1986) Variable transfer of Y-specific sequences in XX males. Nucl. Acids Res.,14, 5375–5387.

    Article  PubMed  CAS  Google Scholar 

  • Berta, P. et al. (1990) Genetic evidence equating SRY and the male sex determining gene. Nature, 348, 448–450.

    Article  PubMed  CAS  Google Scholar 

  • Chandley, A.C. (1988) Meiosis in man. Trends. Genet., 4, 79–84.

    Article  CAS  Google Scholar 

  • Ford, C.E. et al. (1959) A sex chromosome anomaly in a case of gonadal dysgenesis (Turner’s Syndrome). Lancet, i, 711–713.

    Article  Google Scholar 

  • Foster, J.W. et al. (1992) The Human Sex Determining Gene SRY Detects Homologous Sequences on the Marsupial Y Chromosome. Manuscript submitted.

    Google Scholar 

  • Giese, K. Cox, J. and Grosschedl, R. (1992) The HMG Domain of Lymphoid Enhancer Factor 1 Bends DNA and Facilitates Assembly of Functional Nucleoprotein Structures. Cell, 69, 185–195.

    Article  PubMed  CAS  Google Scholar 

  • Gubbay, J. et al. (1990a) Normal structure and expression of Zfy genes in XY female mice mutant in Tdy. Development, 109, 647–653.

    CAS  Google Scholar 

  • Gubbay, J. et al. (1990b) A gene mapping to the sex-determining region of the mouse Y chromosome is a member of a novel family of embryonically expressed genes. Nature, 346, 245–250.

    Article  CAS  Google Scholar 

  • Gubbay, J. et al. (1992) Inverted repeat structure if the Sry locus in mice. Proc. Natl Acad Sci. USA, in press.

    Google Scholar 

  • Harley, V.R. et al. (1992) DNA Binding Activity of Recombinant SRY from Normal Males and XY Females. Science, 255, 453–456.

    Article  PubMed  CAS  Google Scholar 

  • Hawkins, J.R. et al. (1992) Mutational analysis of SRY: nonsense and missense mutations in XY sex reversal.. Hum. Genet., 88, 471–474.

    Article  PubMed  CAS  Google Scholar 

  • Jacobs, P.A. and Strong, J.A. (1959) A case human intersexuality having possible XXY sex determining mechanism. Nature, 183, 302–303.

    Article  PubMed  CAS  Google Scholar 

  • Jäger, R.J. et al. (1990) A human XY female with a frame shift mutation in the candidate testis-determining gene SRY. Nature, 348, 452–454.

    Article  PubMed  Google Scholar 

  • Jost, A. (1947) Recherches sur la differentiation sexuelle de l’embryon de lapin. Arch. Anat. Microsc. Morphol. Experim., 36, 271–315.

    Google Scholar 

  • Koopman, P. et al.(1989) Zfy gene expression patterns are not compatible with a primary role in mouse sex determination. Nature, 342, 940–942.

    Article  PubMed  CAS  Google Scholar 

  • Koopman, P. et al. (1991) Male development of chromosomally female mice transgenic for Sry. Nature, 351, 117–121.

    Article  PubMed  CAS  Google Scholar 

  • Koopman, P. et al. (1990) Expression of a candidate sex-determining gene during mouse testis differentiation. Nature, 348, 450–452.

    Article  PubMed  CAS  Google Scholar 

  • Lovell-Badge, R. and Robertson, E. (1990). XY female mice resulting from a heritable mutation in the primary testis-determining gene, Tdy. Development, 109, 635–646.

    PubMed  CAS  Google Scholar 

  • McElreavey, K.D. et al. (1992) XY Sex Reversal Associated with a Nonsense Mutation in SRY. Genomics, 13, 838–840.

    Article  PubMed  CAS  Google Scholar 

  • Muller, U. et al. (1986) Deletion mapping of the testis determining locus with DNA probes in 46, XX males and in 46, XY and 46, X, dic(Y) females. Nucl. Acids Res., 14, 6489–6505.

    Article  PubMed  CAS  Google Scholar 

  • Nasrin, N. et al. (1991) DNA-binding properties of the product of the testis-determining gene and a related protein. Nature, 354, 317–320.

    Article  PubMed  CAS  Google Scholar 

  • Page, D.C. et al. (1990) Additional deletion in sex-determining region of human Y chromosome resolves paradox of X,t(Y,22) female. Nature, 346, 279–281.

    Article  PubMed  CAS  Google Scholar 

  • Page, D.C. et al. (1987) The sex-determining region of the human Y chromosome encodes a finger protein. Cell, 51, 1091–1104.

    Article  PubMed  CAS  Google Scholar 

  • Palmer, M.S. et al. (1989) Genetic evidence that ZFY is not the testis-determining factor. Nature, 342, 937–939.

    Article  PubMed  CAS  Google Scholar 

  • Schneider-Gädicke, A. et al. (1988) ZFX has a gene structure similar to ZFY, the putative human sex determinant and escapes X inactivation. Cell, 57, 1247–1258.

    Article  Google Scholar 

  • Sinclair, A. et al. (1988) Sequences homologous to ZFY, a candidate human sex-determining gene, are autosomal in marsupials. Nature, 36, 780–783.

    Article  Google Scholar 

  • Sinclair, A.H. et al. (1990) A gene from the human sex-determining region encodes a protein with homology to a conserved DNA-binding motif. Nature, 346, 240–244.

    Article  PubMed  CAS  Google Scholar 

  • Tiersch, T.R. Mitchell, M.J. and Wachtel, S.S. (1991) Studies on the phylogenetic conservation of the SRY gene. Hum. Genet., 87, 571–573.

    Article  PubMed  CAS  Google Scholar 

  • van de Wetering, et al.(1991) Identification and cloning of TCF-1, a T lymphocyte-specific transcription factor containing a sequence-specific HMG box. EMBO J., 10, 123–132.

    PubMed  Google Scholar 

  • Vergnaud, G. et al. (1986) A deletion map of the human Y chromosome based on DNA hybridization. Am. J. Hum. Genet, 38, 109–124.

    PubMed  CAS  Google Scholar 

  • Welshons, W.J. and Russell, L.B. (1959) The Y chromosome as the bearer of male determining factors in the mouse. Proc.Natl.Acad.Sci. USA, 45, 560–566.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Koopman, P. (1993). Mammalian sex determination: what we have learnt from a chromosomal design fault. In: Chromosomes Today. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1510-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1510-0_20

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4660-2

  • Online ISBN: 978-94-011-1510-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics