Skip to main content

Immunological factors that influence disease severity in experimental autoimmune myasthenia gravis

  • Chapter
Immunology of Neuromuscular Disease

Part of the book series: Immunology and Medicine Series ((IMME,volume 24))

Abstract

In health, acetylcholine receptors (AChR) associated with muscle membrane at the endplate are designed to capture acetylcholine molecules released from vesicles at the motor nerve terminals. The AChR, complexed with transmitter, then acts as an ion channel to mediate cationic fluxes into innervated muscles, thereby initiating the chain of events leading to voluntary muscle contraction. Under certain circumstances, however, the AChR may be perturbed in a way that diminishes its ability to translocate ions effectively. Such is the case in myasthenia gravis (MG), an autoimmune disease mediated by antibodies with binding specificity for AChR; upon binding, anti-AChR antibodies may interfere with receptor function to varying degrees, impairing neuromuscular transmission and creating the commonly observed symptoms of weakness and easy fatigability. Much has been learned over the years with regard to the mechanisms underlying MG. However, much is still to be clarified. This is certainly due to the multifactorial nature of the disease: mechanisms for impaired neuromuscular function may be found at several levels. For example, as summarized in Figure 8.1, the induction and severity of disease symptoms might be influenced by the myophysiology of an individual, reflected by minor differences in AChR structure or numbers of receptors found on the post-junctional muscle membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Patrick J, Lindstrom JM. Autoimmune response to acetylcholine receptor. Science. 1973;180:871–2.

    Article  PubMed  CAS  Google Scholar 

  2. Lindstrom J, Shelton D, Fujii Y. Myasthenia gravis. Adv Immunol. 1988;42:233–84.

    Article  PubMed  CAS  Google Scholar 

  3. J. Lindstrom J, Seybold ME, Lennon VA, Whittingham S, Duane DD. Antibody to acetylcholine receptor in myasthenia gravis: Prevalence, clinical correlates, and diagnostic value. Neurology. 1976;26:1054–9.

    CAS  Google Scholar 

  4. Tindall RSA. Humoral immunity in myasthenia gravis: clinical correlations of anti-receptor antibody avidity and titer. Ann NY Acad Sci. 1981;377:316–29.

    Article  PubMed  CAS  Google Scholar 

  5. Drachman DB, Adams RN, Josifek LF, Self SG. Functional activities of autoantibodies to acetylcholine receptors and the clinical severity of myasthenia gravis. N Engl J Med. 1982;307:769–75.

    Article  PubMed  CAS  Google Scholar 

  6. Hohlfeld R, Sterz R, Kalies I, Wekerle H, Peper K. Experimental myasthenia: Lack of correlation between the autoantibody titer and the reduction of acetylcholine-controlled ionic channels measured at functioning endplates. Muscle Nerve. 1983;6:160–3.

    Article  PubMed  CAS  Google Scholar 

  7. Lefvert AK, Cuenoud S, Fulpius BW. Binding properties and subclass distribution of anti-acetylcholine receptor antibodies in myasthenia gravis. J Neuroimmunol. 1981;1:125–35.

    Article  PubMed  CAS  Google Scholar 

  8. Lennon VA, Seybold ME, Lindstrom J, Cochrane C. Role of complement in the pathogenesis of experimental autoimmune myasthenia gravis. J Exp Med. 1978;147:973–83.

    Article  PubMed  CAS  Google Scholar 

  9. Bray JJ, Drachman DB. Binding affinities of anti-acetylcholine receptor autoantibodies in myasthenia gravis. J Immunol. 1982;128:105–10.

    PubMed  CAS  Google Scholar 

  10. Eldefrawi ME, Aronstam RS, Bakry NM, Eldefrawi AT, Albuquerque EX. Activation, inactivation, and desensitization of acetylcholine receptor channel complex detected by binding of histrionicotoxin. Proc Natl Acad Sci USA. 1980;77:2309–13.

    Article  PubMed  CAS  Google Scholar 

  11. Marzo AL, Garlepp MJ, Schon-Hegrad M, Dawkins RL. Susceptibility to murine experimental autoallergic myasthenia gravis: The role of antibody specificity. Clin Exp Immunol. 1986;64:101–6.

    PubMed  CAS  Google Scholar 

  12. Heinemann S, Bevan S, Kullberg R, Lindstrom J, Rice J. Modulation of acetylcholine receptor by antibody against the receptor. Proc Natl Acad Sci USA. 1977;74:3090–4.

    Article  PubMed  CAS  Google Scholar 

  13. Drachman DB, Angus CW, Adams RN, Kao I. Myasthenic antibodies crosslink acetylcholine receptors to accelerate degradation. N Engl 7 Med. 1978;298:1116–22.

    Article  CAS  Google Scholar 

  14. Tzartos SJ, Sophianos D, Efthimiadis A. Role of the main immunogenic region of acetylcholine receptor in myasthenia gravis. An Fab monoclonal antibody protects against modulation by human sera. J Immunol. 1985;134:2343–9.

    PubMed  CAS  Google Scholar 

  15. Brown RM, Krolick KA. Clonotypic analysis of the antibody response to the acetylcholine receptor in experimental autoimmune myasthenia gravis. J Neuroimmunol. 1988;19:205–22.

    Article  PubMed  CAS  Google Scholar 

  16. Thompson PA, Krolick KA. Acetylcholine receptor-reactive antibodies in experimental autoimmune myasthenia gravis differing in disease-causing potential: subsetting by preparative isoelectric focusing. Clin Immunol Immunopathol. 1992;62:199–209.

    Article  PubMed  CAS  Google Scholar 

  17. Yeh T, Krolick KA. Influence of T cell specificity on the heterogeneity and disease-causing capability of antibody against the acetylcholine receptor. J Neuroimmunol. 1987;17:17–34.

    Article  PubMed  CAS  Google Scholar 

  18. Yeh T, krolick KA. Clonotypic analysis of anti-acetylcholine receptor antibodies produced against native and denatured antigen. J Neuroimmunol. 1989;24:133–43.

    Article  PubMed  CAS  Google Scholar 

  19. Yeh TM, Krolick KA. T cells reactive with a small synthetic peptide of the acetylcholine receptor can provide help for a clonotypically heterogeneous antibody response and subsequently impaired muscle function. J Immunol. 1990;144:1654–60.

    PubMed  CAS  Google Scholar 

  20. Zoda T, Yeh TM, Krolick KA. Clonotypic analysis of anti-acetylcholine receptor antibodies from EAMG-sensitive Lewis rats and EAMG-resistant Wistar Furth rats. J Immunol. 1991;146:663–70.

    PubMed  CAS  Google Scholar 

  21. Brown RM, Krolick KA. Selective idiotype suppression of an adoptive secondary anti-acetylcholine receptor antibody response by immunotoxin treatment prior to transfer. J Immunol. 1988;140:893–8.

    PubMed  CAS  Google Scholar 

  22. Biesecker G, Koflier D. Resistance to experimental autoimmune myasthenia gravis in genetically inbred rats: association with decreased amounts of in situ acetylcholine receptor-antibody complexes. J Immunol. 1988;140:3406–10.

    PubMed  CAS  Google Scholar 

  23. Olsberg CA, Maxwell LC, Mikiten TM, Krolick KA. Analysis of contractile properties of muscles from rats immunized with purified acetylcholine receptor. J Neuroimmunol. 1987;14:253–66.

    Article  PubMed  CAS  Google Scholar 

  24. Thompson PA, Barohn RJ, Krolick KA. Repetitive nerve stimulation vs. twitch tension in rats with EAMG. Muscle Nerve. 1991;15:94–100.

    Article  Google Scholar 

  25. Gutman GA. Rat immunoglobulin allotypes. In: Weir DM, editor. Genetics and Molecular Immunology. Oxford: Blackwell Scientific Publications, 1986: Chap 98.

    Google Scholar 

  26. Lennon V, Lambert E. Myasthenia gravis induced by monoclonal antibodies to acetylcholine receptor. Nature. 1980;285:238–40.

    Article  PubMed  CAS  Google Scholar 

  27. Lennon VA, Lambert EH. Monoclonal antibodies to acetylcholine receptors: Evidence for a dominant idiotype and requirement of complement for pathogenicity. Ann NY Acad Sci. 1981;377:77–96.

    Article  PubMed  CAS  Google Scholar 

  28. Gomez C, Richman D. Anti-acetylcholine receptor antibodies directed against the abungarotoxin binding site induce a unique form of experimental myasthenia. Proc Nat’ Acad Sci USA. 1983;80:4089–93.

    Article  CAS  Google Scholar 

  29. Gomez C, Richman D. Monoclonal anti-acetylcholine receptor antibodies with differing capacities to induce experimental autoimmune myasthenia gravis. J Immunol. 1985;135: 234–41.

    PubMed  CAS  Google Scholar 

  30. Tzartos S, Hochschwender S, Vasquez P, Lindstrom J. Passive transfer of experimental autoimmune myasthenia gravis by monoclonal antibodies to the main immunogenic region of the acetylcholine receptor. J Neuroimmunol. 1987;15:185–94.

    Article  PubMed  CAS  Google Scholar 

  31. Thompson PA, Krolick KA. Subsetting of acetylcholine receptor-reactive antibodies by preparative isoelectric focusing. Prep Biochem. 1991;21:229–35.

    Article  PubMed  CAS  Google Scholar 

  32. Bartfeld D, Fuchs S Immunological characterization of an irreversibly denatured acetylcholine receptor. FEBS Lett. 1977;77:214–18.

    Article  PubMed  CAS  Google Scholar 

  33. Bartfeld D, Fuchs S. Specific immunosuppression of experimental autoimmune myasthenia gravis by denatured acetylcholine receptor. Proc Nat’ Acad Sci USA. 1978;75:4006–10.

    Article  CAS  Google Scholar 

  34. Bartfeld D, Fuchs S. Fractionation of antibodies to acetylcholine receptor according to antigenic specificity. FEBS Lett. 1979;105:303–6.

    Article  PubMed  CAS  Google Scholar 

  35. Lindstrom JM, Lennon VA, Seybold ME, Whittingham S. Experimental autoimmune myasthenia gravis: biochemical and immunochemical aspects. Ann NY Acad Sci. 1976;274:254–74.

    Article  PubMed  CAS  Google Scholar 

  36. Froehner SC. Identification of exposed and buried determinants of the membrane-bound acetylcholine receptor from Torpedo californica. Biochemistry. 1981;20:4905–15.

    Article  PubMed  CAS  Google Scholar 

  37. Ratnam M, Sargent PB, Sarin V, et al. Location of antigenic determinants on primary sequences of subunits of nicotinic acetylcholine receptor by peptide mapping. Biochemistry. 1986;25:2621–32.

    Article  PubMed  CAS  Google Scholar 

  38. Ralston S, Sarin V, Thanh HL, Rivier J, Fox JL, Lindstrom J. Synthetic peptides used to locate the bungarotoxin binding site and immunogenic regions on a subunit of the nicotinic acetylcholine receptor. Biochemistry. 1987;26:3261–6.

    Article  PubMed  CAS  Google Scholar 

  39. Guillet J-G, Lai MZ, Briner TJ, et al. Immunological self, nonself discrimination. Science. 1987;235:865–70.

    Article  PubMed  CAS  Google Scholar 

  40. Buus S, Sette A, Miles C, Grey HM. The relation between major histocompatibility complex restriction and the capacity of Ia to bind immunogenic peptides. Science. 1987;235:1353–8.

    Article  PubMed  CAS  Google Scholar 

  41. Berzofsky JA, Brett SJ, Streicher HZ, Takahashi H. Antigen processing for presentation to T lymphocytes: Function, mechanisms, and implications for the T cell repertoire. Immunol Rev. 1988;106:5–31.

    Article  PubMed  CAS  Google Scholar 

  42. Babbitt BP, Allen PM, Matsueda G, Haber E, Unanue ER. The binding of immunogenic peptides to Ia histocompatibility molecules. Nature. 1985;317:359–61.

    Article  PubMed  CAS  Google Scholar 

  43. Brown JH, Jardetzky T, Saper MA, Samaraoui B, Bjorkman PJ, Wiley DC. A hypothetical model of the foreign antigen binding site of class II histocompatibility molecules. Nature. 1988;332:845–50.

    Article  PubMed  CAS  Google Scholar 

  44. Rosenthal A. Determinant selection and macrophage function in genetic control of the immune response. Immunol Rev. 1978;40:136–52.

    Article  PubMed  CAS  Google Scholar 

  45. Davis M, Bjorkman P. T cell antigen receptor genes and T cell recognition. Nature. 1988;334:395–402.

    Article  PubMed  CAS  Google Scholar 

  46. Lorenz RG, Tyler AN, Allen PM. T cell recognition of ribonuclease: Self/nonself discrimination at the level of binding to the I-A’ molecule. J Immunol. 1988;141:4124–8.

    PubMed  CAS  Google Scholar 

  47. Lorenz RG, Allen PM. Direct evidence for functional self protein/Ia-molecule complexes in vivo. Proc Natl Acad Sci USA. 1988;85:5220–4.

    Article  PubMed  CAS  Google Scholar 

  48. Fuchs S, Nevo D, Tarrah-Hazdai R, Yaar I. Strain differences in the autoimmune response of mice to acetylcholine receptors. Nature. 1976;263:329–30.

    Article  PubMed  CAS  Google Scholar 

  49. Christadoss P, Lennon VA, David C. Genetic control of experimental autoimmune myasthenia gravis in mice. I. Lymphocyte proliferative response to acetylcholine receptor is under H-2-linked Ir gene control. J Immunol. 1979;123:2540–3.

    PubMed  CAS  Google Scholar 

  50. Christadoss P, Lindstrom J, Melvold R, Talal N. Mutation at I-A beta chain prevents experimental autoimmune myasthenia gravis. Immunogenetics. 1985;21:33–8.

    Article  PubMed  CAS  Google Scholar 

  51. Berman PW, Patrick J. Linkage between the frequency of muscular weakness and loci that regulate immune responsiveness in murine experimental myasthenia gravis. J Exp Med. 1980;152:507–20.

    Article  PubMed  CAS  Google Scholar 

  52. Biesecker G, Koffler D. Resistance to experimental autoimmune myasthenia gravis in genetically inbred rats: Association with decreased amounts of in situ acetylcholine receptor-antibody complexes. J Immunol. 1988;140:3406–10.

    PubMed  CAS  Google Scholar 

  53. Fujii Y, Lindstrom J. Specificity of the T cell immune response to acetylcholine receptor in experimental myasthenia gravis. Response to subunits and synthetic peptides. J Immunol. 1988;140:1830–7.

    PubMed  CAS  Google Scholar 

  54. Zhang Y, Barkas T. Juillerat M, Schwendimann B, Wekerle H. T cell epitopes in experimental myasthenia gravis of the rat: Strain-specific epitopes and cross-reaction between two distinct segments of the a chain of the acetylcholine receptor (Torpedo cal(ornica). Eur J Immunol. 1988;18:551–7.

    Article  PubMed  CAS  Google Scholar 

  55. Yokoi T, Mulac-Jericevic H, Atassi MZ. T lymphocyte recognition of acetylcholine receptor. Localization of the full T cell recognition profile on the extracellular part of the a chain of Torpedo californica acetylcholine receptor. Eur J Immunol. 1987;17:1697–702.

    Article  PubMed  CAS  Google Scholar 

  56. Atassi MZ, Biserka M, Yokoi T, Manshouri Y. Localization of the functional sites on the a chain of acetylcholine receptor. Fed Proc. 1988;46:2538–47.

    Google Scholar 

  57. Lennon VA, McCormick DJ, Lambert EH, Griesmann GE, Atassi MZ. Region of peptide 125–147 of acetylcholine receptor alpha subunit is exposed at neuromuscular junction and induces experimental autoimmune myasthenia gravis, T cell immunity, and modulating autoantibodies. Proc Natl Acad Sci USA. 1985;82:8805–9.

    Article  PubMed  CAS  Google Scholar 

  58. Hohlfeld R, Kalies I, Heinz F, Kalden JR, Werkele H. Autoimmune rat T lymphocytes monospecific for acetylcholine receptor: Purification and fine specificity. J Immunol. 1981;126:1355–9.

    PubMed  CAS  Google Scholar 

  59. Infante AJ, Thompson PA, Krolick KA, Wall KA. Determinant selection in murine experimental autoimmune myasthenia gravis: effect of the bm12 mutation on T cell recognition of acetylcholine receptor epitopes. J Immunol. 1991;146:2977–82.

    PubMed  CAS  Google Scholar 

  60. Infante AJ, Levcovitz H, Wall KA, Thompson PA, Krolick KA. Preferential use of a T cell receptor Vβ gene by acetylcholine receptor-reactive T cells from myasthenia gravis susceptible mice. J Immunol. 1992;148:3385–90.

    PubMed  CAS  Google Scholar 

  61. Krolick KA, Urso OE. Influence of T cell specificity on the antibody response to the acetylcholine receptor. J Neuroimmunol. 1986;13:75–81.

    Article  PubMed  CAS  Google Scholar 

  62. Celada F, Sercarz EE. Preferential pairing of T-B specificities in the same antigen: the concept of directional help. Vaccine. 1988;6:94–8.

    Article  PubMed  CAS  Google Scholar 

  63. Tami JA, Urso OE, Krolick KA. T cell hybridomas reactive with the acetylcholine receptor and its subunits. J Immunol. 1987;138:732–8.

    PubMed  CAS  Google Scholar 

  64. Arthur R, Mason D. T cells that help B cell responses to soluble antigen are distinguishable from those producing interleukin 2 on mitogenic or allogeneic stimulation. J Exp Med. 1986;163:774–86.

    Article  PubMed  CAS  Google Scholar 

  65. Hohlfeld R, Toyka KV, Heininger K, Gross-Wilde H, Kalies I. Autoimmune human T lymphocytes specific for acetylcholine receptor. Nature. 1984;310:244–6.

    Article  PubMed  CAS  Google Scholar 

  66. Hohlfeld R, Toyka KV, Miner LL, Walgrave SL, Conti-Tronconi BM. Amphipathic segment of the nicotinic receptor alpha subunit contains epitopes recognized by T lymphocytes in myasthenia gravis. J Clin Invest. 1988;81:657–60.

    Article  PubMed  CAS  Google Scholar 

  67. Melms A, Chrestel S, Schalke BC, et al. Autoimmune T lymphocytes in myasthenia gravis. Determination of target epitopes using T lines and recombinant products of the mouse nicotinic acetylcholine receptor gene. J Clin Invest. 1989;83:785–90.

    Article  PubMed  CAS  Google Scholar 

  68. Corey AL, Richman DP, Agius MA, Wollmann RL. Refractoriness to a second episode of experimental myasthenia gravis: correlation with AChR concentration and morphologic appearance of the postsynaptic membrane. J Immunol. 1987;138:3269–75.

    PubMed  CAS  Google Scholar 

  69. Williams CL, Lennon VA. Thymic B Lymphocyte clones from patients with myasthenia gravis secrete monoclonal striational autoantibodies reacting with myosin, a actinin, or actin. J Exp Med. 1986;164:1043–59.

    Article  PubMed  CAS  Google Scholar 

  70. Penn AS, Schotland DL, Lamme S. Anti-muscle and anti-acetylcholine receptor antibodies in myasthenia gravis. Muscle Nerve. 1986;9:407–15.

    Article  PubMed  CAS  Google Scholar 

  71. Zimmermann CW, Weiss G. Antibodies not directed against the acetylcholine receptor in myasthenia gravis: an immunoblot study. J Neuroimmunol. 1987;16:225–36.

    Article  PubMed  CAS  Google Scholar 

  72. Connor RI, Lefvert AK, Benes SC, Lang RW. Incidence and reactivity patterns of skeletal and heart (SH) reactive autoantibodies in the sera of patients with myasthenia gravis. J Neuroimunol. 1990;26:147–57.

    Article  CAS  Google Scholar 

  73. Mohan S, Barohn RJ, Krolick KA. Unexpected crossreactivity between myosin and a main immunogenic region (MIR) of the acetylcholine receptor: isoelectric focusing analysis of antisera obtained from myasthenia gravis patients. Clin Immunol Immunopathol. 1992;64:218–26.

    Article  PubMed  CAS  Google Scholar 

  74. Tzartos S, Kokla A, Walgrave SL, Conti-Tronconi BM. Localization of the mainimmunogenic region of human muscle acetylcholine receptor to residues 67–76 of the a subunit. Proc Nat! Acad Sci USA. 1988;85:2899–903.

    Article  CAS  Google Scholar 

  75. Claudio T, Raftery MA. Inhibition of bungarotoxin binding to acetylcholine receptors by antisera from animals with experimental autoimmune myasthenia gravis. J Supramol Structure. 1980;14:267–79.

    Article  CAS  Google Scholar 

  76. Pachner AR. Anti-acetylcholine receptor antibodies block bungarotoxin binding to native human acetylcholine receptor on the surface of TE671 cells. Neurology. 1989;39:1057–61.

    Article  PubMed  CAS  Google Scholar 

  77. Dan-Goor M, Muhlrad A. Antibody directed against the 142–148 sequence of the myosin heavy chain interferes with myosin-actin interaction. Biochemistry. 1991;30:400–5.

    Article  PubMed  CAS  Google Scholar 

  78. Tong SW, Elzinga M. The sequence of the NH2-termina1204-residue fragment of the heavy chain sequence of rabbit skeletal muscle myosin. J Biol Chem. 1983;258:13100–10

    PubMed  CAS  Google Scholar 

  79. Warrick HM, Spudich JA. Myosin structure and function in cell motility. Annu Rev Cell Biol. 1987;3:379–421.

    Article  PubMed  CAS  Google Scholar 

  80. Oldstone MBA. Molecular mimicry and autoimmune disease. Cell. 1987;50:819–20.

    Article  Google Scholar 

  81. Albers J, Hodach R, Kimmel D, Treacy W. Penicillamine associated myasthenia gravis. Neurology. 1980;30:1246–50.

    Article  PubMed  CAS  Google Scholar 

  82. Aoki T, Drachman DB, Asher DM, Gibbs CJ, Bahmanyar S, Wolinsky J. Attempts to implicate viruses in myasthenia gravis. Neurology. 1985;35:185–92.

    Article  PubMed  CAS  Google Scholar 

  83. Lentz TL, Benson RJJ, Klimowicz D, Wilson PT, Hawrot E. Binding of rabies virus to purified Torpedo acetylcholine receptor. Mol Brain Res. 1986;1:211–19.

    Article  CAS  Google Scholar 

  84. Lefvert A, James RW, Alliod C, Fulpius BW. A monoclonal anti-idiotypic antibody against anti-receptor atibodies from myasthenic sera. Eur J Immunol. 1982;12:790–6.

    Article  PubMed  CAS  Google Scholar 

  85. Dwyer DS, Bradley RJ, Urquhart CK, Kearney JF. Naturally occurring anti-idiotypic antibodies in myasthenia gravis patients. Nature. 1983;301:611–14.

    Article  PubMed  CAS  Google Scholar 

  86. Strickland FM, Hamilton SL, Blalock E, Cerny J. Shared idiotype between phosphorylcholine-specific antibody and acetylcholinesterase detectable by a monoclonal antibody. J Immunol. 1985;134:1053–8.

    PubMed  CAS  Google Scholar 

  87. Lang B, Roberts AJ, Vincent A, Newsome-Davis J. Anti-acetylcholine receptor idiotypes in myasthenia gravis analyzed by rabbit antisera. Clin Exp Immunol. 1985;60:637–44.

    PubMed  CAS  Google Scholar 

  88. Lefvert A, Holm G, Pirskanen R. Autoantiidiotypic antibodies in myasthenia gravis. Ann NY Acad Sci. 1986;505:133–54.

    Article  Google Scholar 

  89. Cunningham MW, McCormack JM, Fenderson PG, Ho M, Beachey EH, Dale JB. Human and murine antibodies cross-reactive with streptococcal M protein and myosin recognize the sequence GLN-LYS-SER-LYS-GLN in M protein. J Immunol. 1989;143:2677–83.

    PubMed  CAS  Google Scholar 

  90. Cunningham MW, Antone SM, Fulizia JM, McManus BM, Fischetti VA, Gauntt CJ. Molecular mimicry between streptococcal M protein, coxsackie viruses, and human cardiac myosin: A link to cytotoxic autoimmunity. Proc Natl Acad Sci USA. 1992;89:1320–4.

    Article  PubMed  CAS  Google Scholar 

  91. Beisel KW, Srinivasappa 3, Prabhakar BS. Identification of a putative shared epitope between coxsackie virus B4 and alpha cardiac myosin heavy chain. Clin Exp Immunol. 1991;86:49–55.

    Article  PubMed  CAS  Google Scholar 

  92. Prives J, Fulton A, Penman S, Daniels MP, Christian CN. Interaction of the cytoskeletal framework with acetylcholine receptor on the surface of embryonic muscle cells in culture. J Cell Biol. 1982;92:231–6.

    Article  PubMed  CAS  Google Scholar 

  93. Gotti C, Conti-Tronconi BM, Raftery MA. Mammalian muscle acetylcholine receptor purification and characterization. Biochemistry. 1982;21:3148–54.

    Article  PubMed  CAS  Google Scholar 

  94. Froehner SC. The submembrane machinery for nicotinic acetylcholine receptor clustering. J Cell Biol. 1991;114:1–7.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Krolick, K.A., Thompson, P.A., Zoda, T.E., Mohan, S., Barohn, R.J., Yeh, TM. (1994). Immunological factors that influence disease severity in experimental autoimmune myasthenia gravis. In: Hohlfeld, R. (eds) Immunology of Neuromuscular Disease. Immunology and Medicine Series, vol 24. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1422-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1422-6_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4622-0

  • Online ISBN: 978-94-011-1422-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics