Skip to main content

Biocides for metalworking lubricants and hydraulic fluids

  • Chapter

Abstract

Although all organic-based functional fluids (lubricants) are usually subject to potential microbiological deterioration, only those products that are water extendable are usually candidates for biocide use. Depending on product use patterns, selection and application of biocides should be a decision involving the user as well as the formulator of the fluid.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   349.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Holtzman, G.H.M., Rossmoore H.W., Holodnik E., and Weintraub M. (1982) Interrelationships between biodeterioration, chemical breakdown, and function in soluble oil emulsions, Dev. Ind. Microbiol. 23, 207–216.

    CAS  Google Scholar 

  • Rossmoore, H.W. (1981) Antimicrobial agents for water-based metalworking fluids, J. Occup. Med. 23(4) 247–254.

    CAS  Google Scholar 

  • Rossmoore, H.W. (1982) The role of the inoculum in the microbiological evaluation of water-based metalworking fluids. Chapter 10.4 in Bartz, W.J. (Ed.), International Yearbook of Tribology—1982 Edition, W. Germany: Expert Verlag, pp. 791–797.

    Google Scholar 

  • Rossmoore, H.W. (1986) Microbial degradation of water-based metalworking fluids. Chapter 14 in: Moo-Young, M., Cooney, C.L. and Humphrey, A.E. (eds.), Comprehensive Biotechnology vol. 3, New York: Pergamon Press, pp. 249–269.

    Google Scholar 

  • Rossmoore, H.W. (1990) The interaction of formaldehyde, isothiazolone, and copper, Intl. Biodetn. 26, 225–235.

    Article  CAS  Google Scholar 

  • Rossmoore, H.W. and Rossmoore L.W. (1991) Effect of microbial growth products on biocide activity in metalworking fluids, Intl Biodetn. 27, 145–156.

    Article  CAS  Google Scholar 

  • Rossmoore, H.W., Rossmoore, L.A. and Kaiser A.L. (1988) Evaluation of thermal pasteurization for control of metal working fluid biodeterioration, In Houghton, D.R., Smith, R.N. and Eggins H.O.W. (eds.), Biodeterioration 7. New York, NY: Elsevier Applied Science, pp. 517–522.

    Chapter  Google Scholar 

  • Proceedin gs of the 7th International Biodeterioration Symposium, in press.

    Google Scholar 

  • Rossmoore, H.W., Sieckhaus, J.F. Rossmoore, L.A. and DeFonzo D. (1979) The utility of biocide combinations in controlling mixed microbial populations in metalworking fluids, Lub. Eng. 35(10), 559–563.

    CAS  Google Scholar 

  • Sondossi, M., Rossmoore, H.W. and Williams R. (1989) Relative formaldehyde resistance among bacterial survivors of biocide-treated metalworking fluid, Intl Biodetn. 25, 423–437.

    Article  CAS  Google Scholar 

  • Sondossi, M., Rossmoore, H.W. and Wireman J.W. (1986) The effect of fifteen biocides on formaldehyde-resistant strains of Pseudomonas aeruginosa, J. Of Ind. Microbiol, 1(2), 87–96.

    Article  CAS  Google Scholar 

References

  1. Rossmore, H.W., and Szlatky, K., Characterization of the microbial flora of invert emulsion hydraulic fluids, Int. Biodetn. Bulletin 13(4), 1977, 96–100.

    Google Scholar 

  2. McConville, J.F., et al., Method for performing aerobic plate counts of anhydrous cosmetics utilizing Tween 60 and Arlacel 80 as dispersing agents, Applied Microbiology 27, 1974, 5–7.

    CAS  Google Scholar 

  3. Hoffman, N.M., Hydraulic fluid of 95-percent water, Lubrication Engineering 35(2), 1979, 65–71.

    Google Scholar 

  4. Standard Methods for the Examination of Water and Waste Water, American Public Health Association, 10015 18th Street N.W., Washington, DC 20036.

    Google Scholar 

  5. Manual of Methods for General Bacteriology, Phillip Gerhardt, Editor, American Society for Microbiology, 1913 I Street N.W., Washington, DC 20006, 1981.

    Google Scholar 

References

  1. Gilbert, P., Brown, M.R.W., and Costerton, J.W., Inocula for antimicrobial sensitivity testing; a critical review, Journal of Antimicrobial Chemotherapy, 20, 1987, 147–154.

    Article  CAS  Google Scholar 

  2. Bott, T.R., and Miller, P.C., Mechanisms of biofilm formation on aluminum tubes, Journal of Chemical Technology and Biotechnology, 1983, 33B, 177–184.

    CAS  Google Scholar 

  3. Bryers, J., and Characklis, W., Early fouling biofilm formation in a turbulent flow system, Overall Kinetics, Water Research, vol. 15, 1981, 483–491.

    Google Scholar 

  4. McCoy, W.F., Bryers, J.D., Robbins, J., and Costerton, J.W., Observations of fouling biofilm formation, Canadian Journal of Biotechnology, 27, 1981, 910–917.

    CAS  Google Scholar 

  5. Sjollema, J., Busscher, H.J., and Weerkomp, A.H., Experimental approaches for studying adhesion of microorganisms to solid substrata, Applications and Mass Transport, Journal of Microbial Methods, 9, 79–90.

    Google Scholar 

  6. Characklis, W. G., Bioengineering report, Fouling biofilm development, A Process Analysis, Biotechnology and Bioengineering, 23, 1981 pp. 1923–1960.

    Article  CAS  Google Scholar 

  7. Wardell, J.N., Methods for the study of bacterial attachment, Methods in Aquatic bacteriology, Austin, B. (ed.), John Wiley and Sons Ltd, 1988, pp.389–415.

    Google Scholar 

  8. Mosely, E.B., Elliker, P.R., and Hays, H., Destruction of food spoilage, indicator and pathogenic organisms by various germicides in solution and on a stainless steel surface, Journal of Milk and Food Technology, 39, 1975, 830–836.

    Google Scholar 

  9. Lechevallier, M., Cawthan, C.D., and Lee, R.G., Factors promoting survival of bacteria in chlorinated water supplies, Applied and Environmental Microbiology, 54, 1988, 649–654.

    CAS  Google Scholar 

  10. Cowan, M.J., Taylor, K.G., and Doyle, R.J., Role of sialic acid in the kinetics of Streptococcus sanguis adhesion to artificial pellicle, Infection and Immunity, 55, 1987, 1552–1557.

    CAS  Google Scholar 

  11. Willcox, M.D.P., Wyatt, J.E., and Handley, P.S., A comparison of the adhesive properties and surface ultra-structure of the fibrillar Streptococcus sanguis 12 and an adhesion deficient non-fibrillar mutant 12 n, Journal of Applied Bacteriology, 66, 1989, 291–299.

    Article  CAS  Google Scholar 

  12. McEldowney, S., and Fletcher, M., Effect of growth conditions and surface characteristics of aquatic bacteria on their attachment to solid surfaces, Journal of General Microbiology, 132, 1986, 513–523.

    CAS  Google Scholar 

  13. Anderson, R.L., Holland, B.W., Carr, J.K., Bond, W.W., and Favero, M.S., Effect of disinfectants on pseudo-monads colonized on the interior surface of PVC Pipes, American Journal of Public Health, January 1990, 80(1).

    Google Scholar 

  14. Jones, C.A., Leidlein, J.H., and Grierson, J.G., Methods for evaluating the efficacy of biocides against sessile bacteria, Cooling Tower Institute 1987: Annual Meeting. Technical Paper Number TP 87–6, 1987.

    Google Scholar 

  15. Characklis, W.G., Zelver, N., and Roe, F.L., Continuous on-line monitoring of microbial deposition on surfaces, Biodeterioration 6—Proceedings of the Sixth International Biodeterioration Symposium, Barry, S., and Houghton, D.R. (Eds), CAB International, UK, 1984, 427–433.

    Google Scholar 

  16. Anwar, H., van Biesen, T., Dasgupta, M., Lam, K., and Costerton, J.W., Interaction of biofilm bacteria with antibiotics in a novel in vitro chemostat system, Antimicrobial Agents and Chemotherapy, 1989,1824–1826.

    Google Scholar 

  17. Duddridge, J.E., Kent, C.A., and Laws, J.F., Effect of surface shear stress on the attachment of Pseudomonas fluorescens to stainless steel under defined flow conditions, Biotechnology & Bioengineering, 24, 1982, 153–164.

    Article  CAS  Google Scholar 

  18. Bakke, R., Trulear, M.G., Robinson, J.A., and Characklis, W.G., Activity of Pseudomonas aeruginosa in biofilms, steady state, Biotechnology and Bioengineering, 26, 1984, 1418–1424,

    Article  CAS  Google Scholar 

  19. Peters, A.C., and Wimpenny, J.W.T., A constant depth laboratory model, film fermentor, Biotechnology and Bioengineering, 32, 1988, 263–270.

    Article  CAS  Google Scholar 

  20. Kinner, N.E., Balkwill, D.L., and Bishop, P., Light and electron microscopic studies of microorganisms growing in rotating biological contactor biofilms, Applied and Environmental Microbiology, 45, 1983, 1659–1669.

    CAS  Google Scholar 

  21. McCoy, W.F., and Lashen, E.S., Evaluation of industrial biocides in Laboratory model cooling towers, Cooling Tower Institute 1986, Annual Meeting, Technical Paper Number TP-86-17, 1986.

    Google Scholar 

  22. Pederson, K., Holmstrom, C., Olson, A., and Pederson, A., Statistical evaluation of the influence of species variation, culture conditions, surface wettability and fluid shear on attachment and biofilm development of marine bacteria, Archives of Microbiology, 145, 1982, pp. 1–8.

    Article  Google Scholar 

  23. Sjollema, J., Busscher, H.J., and Weerkomp, A.H., Real-time enumeration of adhering microorganisms in a parallel plate flow cell using automated image analysis, Journal of Microbial Methods, 9, 1989, pp. 73–78.

    Article  Google Scholar 

  24. Pederson, K., Method for studying microbial biofilms in flowing water systems, Applied and Environmental Microbiology, 43, pp. 1982, 6–13.

    Google Scholar 

  25. Hicks, S.J., and Rowbury, R.J., Virulence plasmid-associated adhesion of E. coli and its significance for chlorine resistance, Journal of Applied Bacteriology, 61, 1986, 209–218.

    Article  CAS  Google Scholar 

  26. Rutter, P., and Leech, R., The deposition of Streptococcus sanguis NCTC 7868 from a flowing suspension, Journal of General Microbiology, 120, 1980, 301–307.

    CAS  Google Scholar 

  27. Kogure, K., Simidu, U., and Tago, N.,A tentative direct microscopic method for counting living marine bacteria, Canadian Journal of Microbiology, 25, 1979,415–420.

    Article  CAS  Google Scholar 

  28. Lytle, M.S., Adams, J.C., Dickman, D.G., and Bressler, W.R., Use of nutrient response techniques to assess the effectiveness of chlorination of rapid sand filter gravel, Applied and Environmental Microbiology, 55, 1989,29–32.

    CAS  Google Scholar 

  29. Roszak, D.B., and Colwell, R.R., Metabolic activity of bacterial cells enumerated by direct viable count, Applied and Environmental Microbiology, 53, 1987, 2889–2893.

    CAS  Google Scholar 

  30. McKay, T., Wilson, J., Fenlan, D.R., and Seddan, B., Viablue 2 distinguishes between viable and dead bacterial cells, Journal of Applied Bacteriology, 67, (6), 1989, XLI.

    Google Scholar 

  31. Forstmaier, I., Fluorescence microscopic methods for rapid detection of live germs in tap water, Glas-und Instrumenten Technik Fachzeitschrift Fuer das Laboratorium, 22(5), 1978, 379–380,

    Google Scholar 

  32. Forstmaier, I., Fluorescence microscopic methods for rapid detection of live germs in tap water, Glas-und Instrumenten Technik Fachzeitschrift Fuer das Laboratorium, 22(5), 1978, 383–385.

    Google Scholar 

  33. Portno, H.O., and Molzahn, S.W., New methods for the detection of viable microorganisms, The Brewers Digest, March 1977, 44–47.

    Google Scholar 

  34. Chrzanowski, T.H., Crotty, R.D., Hubbard, J.G., and Welch, R.P., Applicability of the fluorescein diacetate method of detecting active bacteria in fresh water, FEMS (Federation of European Microbiological Societies) Microbiology—Ecology, 10, 1984, 179–185.

    Google Scholar 

  35. Bercovier, H., Resnick, M., Kornitzer, D., and Levy, L., Rapid method for testing drug-susceptibility of Mycobacteria spp. and Gram-Positive bacteria using rhodamine 123 and fluorescein diacetate, Journal of Microbial Method, 7, 1987, 139–142.

    Article  CAS  Google Scholar 

  36. Oren, A., On the use of tetrazolium salts for measurement of microbial activity in sediments, FEMS (Federation of European Microbiological Societies) Microbiology—Ecology, 45, 1987, 127–133.

    Article  CAS  Google Scholar 

  37. Pegram, R.G., The microbiological uses of 2,3,5-Triphenyltetrazolium chloride, Journal of Medical Laboratory Technology, 26, 1969, 175–198.

    CAS  Google Scholar 

  38. Tabor, P., and Neihof, R., Improved method for determination of respiring individual microorganisms in natural waters, Applied and Environmental Microbiology, 43, 1982, 1249–1255.

    CAS  Google Scholar 

  39. Bittan, G., and Koopman, B., Tetrazolium reduction—malachite green method for assessing the viability of filamentous bacteria in activated sludge, Applied and Environmental Microbiology, 43, 1982, 964–966.

    Google Scholar 

  40. Ward, D.M., Molecular probes for analysis of microbial communities, in: Structure and Function of Biofilms, Characklis, W.G., and Wilderer, P.A. John Wiley and Sons, Chichester, New York, Brisbane, Toronto, Singapore, 1989, pp. 129–144.

    Google Scholar 

  41. Presnier, G., Dubourguier, H.C., Thomas, I., Albagnac, G., and Buisson, M.O., Specific immunological probes for studying the bacterial associations in granules and biofilms, In: Granular Anaerobic Sludge; Microbiology and Technology, Lettinga, G., Zehnder, A.J.B., Grotenhuis, J.T.C., and Hulshoffpol, L.W. (eds) Wageningen, Netherlands: Pudoc, 1988, pp. 55–61.

    Google Scholar 

  42. Prosser, B., Taylor, D., Dix, B., and Cleeland, R., Method of evaluating effects of antibiotics on bacterial biofilm, Antimicrobial Agents and Chemotherapy, 31, 1987, 1502–1506.

    Article  CAS  Google Scholar 

  43. Favero, M.S., McDade, J.J., Robersten, J.A., Hoffman, R.K., and Edwards, R.W., Microbiological sampling of surfaces, Journal of Applied Bacteriology, 31, 1968, 336–343,

    Article  CAS  Google Scholar 

  44. Martin, R.E., Ramirez, M.Y., and Olivieri, O.P., Attachment of bacteria to surfaces in drinking water distribution systems, Annual Society of Microbiology Meeting, 1987.

    Google Scholar 

  45. Lewis, S.J., and Gilmaur, A., Microflora associated with the internal surfaces and stainless steel milk transfer pipeline, Journal of Applied Bacteriology, 62, 1987, 327–333.

    Article  CAS  Google Scholar 

  46. Paerl, N.W., and Merkel, S.M., Differential phosphorous assimilation in attached vs. unattached microorganisms, Archiv Fur Hydrobiologie, 93, 1982, 125–134.

    Google Scholar 

  47. Tabor, P.S., and Neihof, R.A., Improved microautoradiographic method to determine individual microorganisms active in substrate uptake in natural waters, Applied and Environmental Microbiology, 44, 1982, 945–953.

    CAS  Google Scholar 

  48. Imam, S.H., and Gould, J.M., Adhesion of an amylolytic arthrobacter sp. to starch-containing plastic films, Applied and Environmental Microbiology, 56, 1990, 872–876.

    CAS  Google Scholar 

  49. Harber, M.J., Makenzie, R., and Asscher, A.W., A rapid bioluminance method for quantifying bacterial adhesion to polystyrene, Journal of General Microbiology, 129, 1983, 621–632.

    CAS  Google Scholar 

  50. Fletcher, M., Microautoradiography study of the activity of attached and free-living bacteria, Archives of Microbiology, 122, 1979, 271–274.

    Article  Google Scholar 

  51. Dix, B.A., Cohen, P.S., Laux, D.C., and Cleeland, R., Radiochemical method for evaluating the effect of antibiotics on Escherichia coli Biofilms, Antimicrobial Agents and Chemotherapy, 32, 1988, 770–772.

    Article  CAS  Google Scholar 

  52. Fletcher, M., Measurement of glucose utilization by Pseudomonas fluorescens that are free living and that are attached to surfaces, Applied and Environmental Microbiology, 52, 1986, 672–676.

    CAS  Google Scholar 

  53. Hendricks, C.W., Sorption of heterotrophic and enteric bacteria to glass surfaces in continuous cultures of river water, Applied Microbiology, 28, 1974, 572–578.

    CAS  Google Scholar 

  54. White, D.C., Bobbie, R.J., Herron, J.S., King, J.D., and Morrison, S.J., Biochemical measurements of microbial mass and activity from environmental samples, Native Aquatic Bacteria—Enumeration, Activity and ecology, ASTM STP 695, Costerton, J.W., and Colwell, R.R. (Eds), American Society for Testing and Materials, pp. 69–81.

    Google Scholar 

  55. Jones, S.E., and Lock, M.A., Hydrolytic extracellular enzyme activity in heterotrophic biofilms from two contrasting streams, Freshwater Biology, 22, 1989, 289–296.

    Article  CAS  Google Scholar 

  56. Dickman, M.D., The use of impedance monitoring to estimate bioburden, in biodeterioration 6—Proceedings of the Sixth International Biodeterioration Symposium, Barry S., and Houghton, D.R. (Eds), CAB International, UK, 1984, pp. 419–427.

    Google Scholar 

  57. Cutler, R.R., Wilson, P., and Clarke, F.V., Evaluation of a radiometric method for studying bacterial activity in the presence of antimicrobial agents, Journal of Applied Bacteriology, 66, 1989,515–521.

    Article  CAS  Google Scholar 

  58. Maxwell, S., and Hamilton, W.A., Modified radiorespirometric assay for determining the sulfide reduction activity of biofilm on metal surfaces, Journal of Microbial Methods, 5, 1986, 83–91.

    Article  CAS  Google Scholar 

  59. James, A.M., and Djavan, A., Microcalorimetric studies of Klebsiella aerogenes growing in chemostat culture 2, C-limited and C-sufficient cultures, Microbios, 30, 1981, 163–170.

    CAS  Google Scholar 

  60. Marshall, K.C., Microscopic methods for the study of bacterial behaviour at inert surfaces, Journal of Microbial Methods, 4, 1986, 217–227.

    Article  Google Scholar 

  61. Hobbie, J.E., Daley, R.J., and Jasper, S., Use of nucleopore filters for counting bacteria by fluorescence microscopy, Applied and Environmental Microbiology, 33, 1977, 1225–1228.

    CAS  Google Scholar 

  62. Paton, A.M., and Jones, S.M., The observations of microorganisms on surfaces by incident fluorescence microscopy, Journal of Applied Bacteriology, 36, 1973, 441–443.

    Article  CAS  Google Scholar 

  63. Holoh, J.T., Betts, R.P., and Thorpe, R.H., The use of epifluorescence microscopy to determine surface hygiene, International Biodeterioration Bulletin, 25, 1989, 147–153.

    Article  Google Scholar 

  64. Porter, K.G., and Feig, Y.S., The use of DAPI for identifying and counting aquatic microflora, Limnology and Oceanography, 25(5), 1980, 943–948.

    Article  Google Scholar 

  65. Coleman, A.W., Enhanced detection of bacteria in natural environments by fluoro-chrome staining of DNA, Limnology and Oceanography, 25(5), 1980, 948–951.

    Article  Google Scholar 

  66. Lewis, S.J., Gilmour, A., Fraser, T., and McCall, R.O., Scanning electron microscopy of soiled stainless steel inoculated with single bacterial cells, International Journal of Food Microbiology, 4, 1987, 279–284.

    Article  Google Scholar 

  67. Zoltai, P.T., Zottola, E.A., and McCay, L.L., Scanning electron microscopy of microbial attachment to milk contact surfaces, Journal of Food Protection, 44, 1981, 204–208.

    Google Scholar 

  68. Marshall, P.A., Loeb, G.I., Cowan, M.M., and Fletcher, M., Response of microbial adhesives and biofilm matrix polymers to chemical treatments as determined by interference reflection microscopy and light section microscopy. Applied and Environmental Microbiology, 1989, 2827–2831.

    Google Scholar 

  69. Jones, H.C., Roth, I.L., and Sanders, W.M., III, Electron microscope study of a slime layer, Journal of Bacteriology, 99, 1969, 316–325.

    CAS  Google Scholar 

  70. Fletcher, M., and Floodgate, G.D., An electron microscope demonstration of an acidic polysaccharide involved in the adhesion of a marine bacterium to solid surfaces, Journal of General Microbiology, 74, 1973, 325–334.

    Article  CAS  Google Scholar 

  71. Fletcher, M., The effect of proteins on bacterial attachment to polystyrene, Journal of General Microbiology, 94, 1976, 400–404.

    Article  CAS  Google Scholar 

  72. Blumekrantz, N., and Asboe-Hansen, G., New method for quantitative determination of uranic acids, Analytical Biochemistry, 54, 1973, 484–489.

    Article  Google Scholar 

  73. Corpe, W.A., An acid polysaccharide produced by a primary film-forming bacterium, Developments in Industrial Microbiology, 11, 1970, 402–412.

    Google Scholar 

  74. Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A., and Smith, F., Colormetric method for determination of sugars and related substances, Analytical Chemistry, 28, 1956, 350–356.

    Article  CAS  Google Scholar 

  75. Geesey, G.G., Mutch, R., Green, R.B., and Costerton, J.W., Sessile bacteria: an important component of the microbial population in small mountain streams, Limnology and Oceanography, 23(6), 1978, 1214–1223.

    Article  CAS  Google Scholar 

  76. Wimpenny, J.W.T. (ed), CRC Handbook of Laboratory Model System for Microbial Ecosystems, CRC Press, Inc. Boca Raton, FL, 1988.

    Google Scholar 

  77. Greensberg, A.E., Trussell, R.R., and Clesceri, L.S., Standard methods for examination of water and wastewater, 16th edn, American Public Health Association, Washington, DC.

    Google Scholar 

  78. Bakke, R., and Olsson, P.Q., Biofilm thickness measurements by light microscopy, Journal of Microbial Methods, 5, 1986, 93–98.

    Article  Google Scholar 

  79. Trulear, M.G., and Characklis, W.G., Dynamics of biofilm processes, Journal of the Water Pollution Control Federation, 54, 1982, 1288–1301.

    CAS  Google Scholar 

  80. Norrman, G., Characklis, W.G., and Bryers, J.D., Control of microbial fouling in circular tubes with chlorine. Developments in Industrial Microbiology, 18, 1977, 581–590.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Rossmoore, H.W. (1995). Biocides for metalworking lubricants and hydraulic fluids. In: Rossmoore, H.W. (eds) Handbook of Biocide and Preservative Use. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1354-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1354-0_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4591-9

  • Online ISBN: 978-94-011-1354-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics