Skip to main content

3D molecular similarity indices and their application in QSAR studies

  • Chapter

Abstract

In order to undertake 3D QSAR calculations or database searches for a biomolecular system of interest, the creation of some form of binding mode model is essential. It is often the case that while a number of ligands for a given receptor are known, the receptor structure itself is not. In this instance, one must infer the critical interactions from ligand structure. While the use of atom—atom matches between ligands are frequently used to this end, such a correspondence is not always obvious when bonding topologies show significant divergence. The two molecules rolipram and denbufylline Figure 2.1 provide a good illustration of this. While both compounds are inhibitors of phosphodiesterase, their structures show no simple atom—atom correspondence. In these circumstances the search for complementarity in molecular properties such as molecular electrostatic potential (MEP) and shape provides an attractive alternative for determining potential pharmacophores. 3D molecular similty indices provide an efficient way by which these comparisons may be undertaken. A 3D molecular similarity index is essentially a mathematical function of the molecular properties it is used to compare. By overlaying two molecules and applying the index over property space, a numerical value for the molecular similarity is determined. The numbers obtained from molecular similarity calculations contain much information regarding the quantitative relationships between ligand properties.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen, M.S., Tan, Y., Trudell, M.L., Narayanan, K., Schindler, L.R., Martin, M.J., Schultz, C., Hagen, T.J., Koehlar, K.F., Codding, P.W., Skolmich, P. and Cook, J.M. (1990) Synthetic and computer assisted analysis of the pharmacophore for the benzodiazepine receptor inverse agonist site. Journal of Medicinal Chemistry, 33, 2343–2357.

    Article  CAS  Google Scholar 

  • Amovilli, C. and McWeeny, R. (1991) Shape and similarity: two aspects of molecular recognition. Journal of Molecular Structure, 227, 1–9.

    Google Scholar 

  • ASP, Oxford Molecular Ltd, The Magdalen Centre, Oxford Science Park, Sandford on Thames, Oxford OX4 4GA, UK.

    Google Scholar 

  • Badel, A., Mornon, J.P. and Hazout, S. (1992) Searching for geometric molecular shape complementarity using bi-dimensional surface profiles. Journal of Molecular Graphics, 10, 205–211.

    Article  CAS  Google Scholar 

  • Baroni, M., Constantino, G., Cruciani, G., Riganello, D., Valigi, R. and Clementi, S. (1993) golpe: an advanced chemometric tool for 3D QSAR problems. Quantitative Structure—Activity Relationships, 12, 9–20.

    Article  CAS  Google Scholar 

  • Bemis, G.W. and Kuntz, I.D. (1992) A fast efficient method for 2D and 3D molecular shape description. Journal of Computer-Aided Molecular Design, 6, 607–628.

    Article  CAS  Google Scholar 

  • Binkley, J.S., Pople, J.A. and Hehre, W.J. (1980) Self consistent molecular orbital methods: small split valence basis sets for first row elements. Journal of the American Chemical Society, 102, 939–946.

    Article  CAS  Google Scholar 

  • Bladen, P. (1989) A rapid method for comparing and matching the spherical parameter surfaces of molecules and other irregular objects. Journal of Molecular Graphics, 1, 130–137.

    Article  Google Scholar 

  • Blaney, F.E., Finn, P., Phippen, R. and Wyatt, M. (1993a) Molecular surface comparison: application to molecular design. Journal of Molecular Graphics, 11, 98–105.

    Article  Google Scholar 

  • Blaney, F.E., Naylor, D. and Woods, J. (1993b) MAMBAS: a realtime graphics environment for QSAR. Journal of Molecular Graphics, 11, 157–165.

    Article  CAS  Google Scholar 

  • Bowen-Jenkins, P.E., Cooper, D.L. and Richards, W.G. (1985) Ab initio computation of molecular similarity. Journal of Physical Chemistry, 89, 2195–2197.

    Article  CAS  Google Scholar 

  • Bowen-Jenkins, P.E. and Richards, W.G. (1986a) Molecular similarity in terms of valence electron density. Journal of the Chemical Society. Chemical Communications, 133–135.

    Google Scholar 

  • Bowen-Jenkins, P.E. and Richards, WG. (1986b) Quantitative measures of similarity between pharmacologically active compounds. International Journal of Quantum Chemistry, 30, 763–768.

    Article  CAS  Google Scholar 

  • Box, G.E.P., Hunter, W.G. and Hunter, J.S. (1978) Statistics for Experimenters. Chapter 12. John Wiley, New York.

    Google Scholar 

  • Burt, C. and Richards, W.G. (1990) Molecular similarity: the introduction of flexible fitting. Journal of Computer-Aided Molecular Design, 4, 231–238.

    Article  CAS  Google Scholar 

  • Burt, C., Richards, W.G. and Huxley, P. (1990) The application of molecular similarity calculations. Journal of Computational Chemistry, 11, 1139–1146.

    Article  CAS  Google Scholar 

  • Carbo, R. and Domingo, L. (1987) LCAO-MO similarity measures and taxonomy. International Journal of Quantum Chemistry, 32, 517–545.

    Article  CAS  Google Scholar 

  • Carbo, R. and Calabuig, B. (1992) Molecular quantum chemistry measures and N-dimensional representation of quantum objects. II. Practical applications. International Journal of Quantum Chemistry, 42, 1695–1709.

    Article  CAS  Google Scholar 

  • Carbo, R., Leyda, L. and Arnau, M. (1980) An electron density measure of the similarity between two compounds. International Journal of Quantum Chemistry, 17, 1185–1189.

    Article  CAS  Google Scholar 

  • Chau, P.-L. and Dean, P.M. (1987) Molecular recognition: 3D surface structure comparison by gnomonic projection. Journal of Molecular Graphics, 5, 97–100.

    Article  CAS  Google Scholar 

  • chem-x, Chemical Design Ltd, Roundway House, Cromwell Business Park, Chipping Norton, Oxon, OX7 5SR, UK.

    Google Scholar 

  • Cioslowski, J. and Fleischmann, E.D. (1991) Assessing molecular similarity from results of ab initio electronic structure calculations. Journal of the American Chemical Society, 113, 64–67.

    Article  CAS  Google Scholar 

  • Connolly, M.L. (1983) Analytical molecular surface calculation. Journal of Applied Crystallography, 16, 548–558.

    Article  CAS  Google Scholar 

  • Connolly, M.L. (1985) Computation of molecular volume. Journal of the American Chemical Society, 107, 1118–1124.

    Article  CAS  Google Scholar 

  • Cooper, D.L. and Allen, N.L. (1991) A novel approach to molecular similarity. Journal of Computer-Aided Molecular Design, 3, 253–259.

    Article  Google Scholar 

  • Cramer, R.D. iii, Bunce, J.D. and Patterson, D.E. (1988a) Cross-validation, bootstrapping, and PLS compared with multiple linear regression in conventional QSAR studies. Quantitative Structure—Activity Relationships, 7, 18–25.

    Article  Google Scholar 

  • Cramer, R.D. iii, Patterson, D.E. and Bunce, J.D. (1988b) Comparative molecular field analysis (CoMFA). Effect of shape on binding of steroids to carrier proteins. Journal of the American Chemical Society, 110, 5959–5967.

    Article  CAS  Google Scholar 

  • Dean, P.M. and Chau, P.-L. (1987) Molecular recognition: optimised searching through molecular 3-space for pattern matches on molecular surfaces. Journal of Molecular Graphics, 5, 152–158.

    Article  CAS  Google Scholar 

  • Dean, P.M., Callow, P. and Chau, P.-L. (1988) Molecular recognition: blind searching for regions of strong structural match on the surfaces of two dissimilar molecules. Journal of Molecular Graphics, 6, 28–34.

    Article  CAS  Google Scholar 

  • Ditchfield, R., Hehre, W.J. and Pople, J.A. (1971) Self consistent molecular orbital methods: an extended Gaussian type basis set for molecular orbital calculations of organic molecules. Journal of Chemical Physics, 54, 724–728.

    Article  CAS  Google Scholar 

  • Dughan, L., Burt, C. and Richards, W.G. (1991) The study of peptide bond isosteres using molecular similarity. Journal of Molecular Structure, 235, 481–488.

    Article  Google Scholar 

  • Dunn, W.J. iii, Wold, S, Edlund, U. et al. (1984) Multivariate structure—activity relationships between data from biological tests and an ensemble of structure descriptors. The PLS method. Quantitative Structure—Activity Relationships, 3, 131–137.

    Article  CAS  Google Scholar 

  • Dunning, T.H. (1970) Gaussian basis functions for use in molecular calculations. I. Contraction of (9s5p) atomic basis sets for the first row atoms. Journal of Chemical Physics, 3, 2823–2833.

    Article  Google Scholar 

  • Ferenzcy, G., Reynolds, C.A. and Richards, W.G. (1991) Semi-empirical AM1 electrostatic potential and AM1 electrostatic potential derived charges, a comparison with ab initio values. Journal of Computational Chemistry, 11, 159–166.

    Google Scholar 

  • Frisch, M.J., Head, G.M., Schlegel, H.B, Raghavachari, K. et al. (1988) Gaussian 88. Gaussian Inc., Pittsburgh, Pennsylvania.

    Google Scholar 

  • Geladi, P. and Kowalski, B.R. (1986) PLS regression: a tutorial. Analytica Chimica Acta, 185, 1–17.

    Article  CAS  Google Scholar 

  • Good, A.C. (1992) The calculation of molecular similarity: alternative formulas, data manipulation and graphical display. Journal of Molecular Graphics, 10, 144–151.

    Article  CAS  Google Scholar 

  • Good, A.C. and Richards, W.G. (1993) Rapid evaluation of shape similarity using Gaussian functions. Journal of Chemical Information and Computer Sciences, 33, 112–116.

    Article  CAS  Google Scholar 

  • Good, A.C., Hodgkin, E.E. and Richards, W.G. (1992) The utilisation of Gaussian functions for the rapid evaluation of molecular similarity. Journal of Chemical Information and Computer Sciences, 32, 188–191.

    Article  CAS  Google Scholar 

  • Good, A.C., Peterson, S.J. and Richards, W.G. (1993a) QSARs from similarity matrices. Technique validation and application in the comparison of different similarity evaluation methods. Journal of Medicinal Chemistry, 36, 2929–2937.

    Article  CAS  Google Scholar 

  • Good, A.C., So, S. and Richards, W.G. (1993b) Structure—activity relationships from similarity matrices. Journal of Medicinal Chemistry, 36, 433–438.

    Article  CAS  Google Scholar 

  • Hehre, W.J, Stewart, R.F. and Pople, J.A. (1969) Self consistent molecular orbital methods: use of Gaussian expansions for Slater type orbitals. Journal of Chemical Physics, 51, 2657–2664.

    Article  CAS  Google Scholar 

  • Hermann, R.B. and Herron, D.K. (1991) ovid and super: two overlap programs for drug design. Journal of Computer-Aided Molecular Design, 5, 511–524.

    Article  CAS  Google Scholar 

  • Hodgkin, E.E. and Richards, W.G. (1986) A semi-empirical method for calculating molecular similarity. Journal of the Chemical Society. Chemical Communications, 1342–1344.

    Google Scholar 

  • Hodgkin, E.E. and Richards, W.G. (1987) Molecular similarity based on electrostatic potential and electric field. International Journal of Quantum Chemistry. Quantum Biology Symposia, 14, 105–110.

    Article  CAS  Google Scholar 

  • Hodgkin, E.E. and Richards, W.G. (1988) Molecular similarity. Chemistry in Britain, 1141–1144.

    Google Scholar 

  • Hopfinger, A.J. (1980) A QSAR investigation of DHFR inhibition by Baker triazines based upon molecular shape analysis. Journal of the American Chemical Society, 102, 7196–7206.

    Article  CAS  Google Scholar 

  • Hopfinger, A.J. (1983) Theory and analysis of molecular potential energy fields in molecular shape analysis: a QSAR study of 2,4-diamino5-benzylpyrimidines as DHFR inhibitors. Journal of Medicinal Chemistry, 26, 990–996.

    Article  CAS  Google Scholar 

  • Hudson, B., Livingstone, D. and Rahr, E. (1988) Pattern recognition display methods for the analysis of computed molecular properties. Journal of Computer-Aided Design, 3, 55–65.

    Google Scholar 

  • Kuntz, I.D., Blaney, J.M., Oatley, S.J, Langridge, R. and Ferrin, T.E. (1982) A geometric approach to macromolecule—ligand interactions. Journal of Molecular Biology, 161, 269–288.

    Article  CAS  Google Scholar 

  • Leger, C., Prolitis, D.N. and Romano, J.P. (1992) Bootstrap technology and applications. Technometrics, 34, 378–395.

    Article  Google Scholar 

  • Livingstone, D.J., Hesketh, G. and Clay worth, D. (1991) Novel method for the display of multivariate data using neural networks. Journal of Molecular Graphics, 9, 115–118.

    Google Scholar 

  • Manallack, D.T. and Beart, P.M. (1988) A three dimensional receptor model of the dopamine D2 receptor from computer graphic analyses of D2 agonists. Journal of Pharmacy and Pharmacology, 40, 422–428.

    Article  CAS  Google Scholar 

  • Maly, B.F.J. (1986) Multivariate statistical methods: A Primer. Chapman and Hall, London.

    Google Scholar 

  • Manaut, M., Sanz, F., Jose, J. and Milesi, M. (1991) Automatic search for maximum similarity between MEP distributions. Journal of Computer-Aided Molecular Design, 5, 371–380.

    Article  CAS  Google Scholar 

  • Masek, B.B, Merchant, A. and Matthew, J.B. (1993) Molecular shape comparisons of angiotensin II receptor antagonists. Journal of Medicinal Chemistry, 36, 1230–1238.

    Article  CAS  Google Scholar 

  • Meyer, A.M. and Richards, W.G. (1991) Similarity of molecular shape. Journal of Computer-Aided Molecular Design, 5, 426–439.

    Article  Google Scholar 

  • Mitchell, T.J. (1974) An algorithm for the construction of D-optimal experimental designs. Technometrics, 16, 203–210.

    Google Scholar 

  • Moon, J.B. and Howe, W.J. (1992) 3D database searching and de novo design construction methods in molecular design. Tetrahedron Computer Methodology, 3, 697–711.

    Article  Google Scholar 

  • Namasivayam, S. and Dean, P.M. (1986) Statistical method for surface pattern matching between dissimilar molecules: electrostatic potentials and accessible surfaces. Journal of Molecular Graphics, 4, 46–50.

    Article  CAS  Google Scholar 

  • Nelder, J.A. and Mead, R. (1965) Simplex method for function minimization, Computer Journal, 7, 308–313.

    Google Scholar 

  • Nilakantan, R., Bauman, N. and Venkataraghavan, R. (1993) New method for rapid characterization of molecular shapes: applications in drug design. Journal of Chemical Information and Computer Sciences, 33, 79–85.

    Article  CAS  Google Scholar 

  • Norinder, U. (1991a) Experimental design based 3D QSAR analysis of steroid—protein interactions; application to human CBG complexes. Journal of Computer-Aided Molecular Design, 4, 381–389.

    Article  Google Scholar 

  • Norinder, U. (1991b) An experimental design based QSAR study on beta-adrenergic blocking agents using PLS. Drug Design and Discovery, 8, 127–136.

    CAS  Google Scholar 

  • Norinder, U. (1992) Experimental design-based QSTR of some local anaesthetics using the PLS method. Journal of Applied Toxicology, 12, 143–147.

    Article  CAS  Google Scholar 

  • Pearson, K. (1901) On lines and planes of closest fit to a system of points in space. Philosophical Magazine, 2, 559–572.

    Google Scholar 

  • Perry, N.C. and van Geerestein, V.J. (1992) Database searching on the basis of 3D molecular similarity using the sperm program. Journal of Chemical Information and Computer Sciences, 32, 607–616.

    Article  CAS  Google Scholar 

  • Petke, J.D. (1993) Cumulative and discrete similarity analysis of electrostatic potentials and fields. Journal of Computational Chemistry, 14, 928–933.

    Article  CAS  Google Scholar 

  • Plummer, E.L. (1990) The application of quantitative design strategies in pesticide discovery. In Reviews in Computational Chemistry (eds K.B. Lipkowitz and D.B. Boyd), pp. 119–169. VCH, New York.

    Chapter  Google Scholar 

  • Reynolds, C.A., Burt, C. and Richards, W.G. (1992) A linear molecular similarity index. Quantitative Structure—Activity Relationships, 11, 34–35.

    Article  CAS  Google Scholar 

  • Richard, A.M. (1991) Quantitative comparison of MEPs for structure—activity studies. Journal of Computational Chemistry, 12, 959–969.

    Article  CAS  Google Scholar 

  • Sanz, F., Manaut, F., Rodriguez, J., Lozoya, E. and Loprezdebrinas, E. (1993) mepsim: a computational package for analysis and comparison of MEPs. Journal of Computer-Aided Molecular Design, 7, 337–347.

    Article  CAS  Google Scholar 

  • Seri-Levy, A. and Richards, W.G. (1993) Chiral drug potency: Pfeiffer’s rule and computed chirality coefficients. Tetrahedron Asymmetry, 4, 1917–1921.

    Article  CAS  Google Scholar 

  • Shoichet, B.K., Bodian, D.L. and Kuntz, I.D. (1992) Molecular docking using shape descriptors. Journal of Computational Chemistry, 13, 380–397.

    Article  CAS  Google Scholar 

  • Stewart, J.J. (1990) mopac: a semiempirical molecular orbital program. Journal of Computer-Aided Molecular Design, 4, 1–105.

    Article  Google Scholar 

  • sybyl, Tripos Associates Inc., 1699 S. Hanley Rd., Suite 303, St. Louis, Missouri 63144.

    Google Scholar 

  • Szabo, A. and Ostland, N.S. (1982) Modern Quantum Chemistry, pp. 410–412. Macmillan, London.

    Google Scholar 

  • Topliss, J.G. and Edwards, R.P. (1979) Chance factors in studies of quantitative structure—activity relationships. Journal of Medicinal Chemistry, 22, 1238–1244.

    Article  CAS  Google Scholar 

  • van Geerestein, V.J., Perry, N.J., Grootenhuis, P.D.I, et al. (1992) 3D database searching on the basis of shape using the sperm prototype method. Tetrahedron Computer Methodology, 3, 595–613.

    Article  Google Scholar 

  • Wold, Ambano, Dunn et al. (1984) Multivariate data analysis in chemistry. In Chemometrics—Mathematics and Statistics in Chemistry (ed. B.R. Kowalski), pp. 17–95. Reidel, Dordrecht.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Good, A.C. (1995). 3D molecular similarity indices and their application in QSAR studies. In: Dean, P.M. (eds) Molecular Similarity in Drug Design. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1350-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1350-2_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4589-6

  • Online ISBN: 978-94-011-1350-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics