Skip to main content

Biodegradability of cationic surfactants

  • Chapter
Biodegradability of Surfactants

Abstract

Cationic surfactants refer to molecules with at least one hydrophobic hydrocarbon tail attached to a hydrophilic head-group carrying a positive charge. Of the cationic surfactants especially quaternary ammonium salts are of commercial significance. These compounds consist of one or more hydrophobic alkyl chain(s), benzyl, hydroxyethyl, polyethylene glycol and/or methyl groups linked to a positively charged nitrogen atom (Figure 6.1). Primary, secondary and tertiary long-chain amine salts may be positively charged and can therefore be regarded as cationic surfactants. Most cationic surfactants have straight alkyl chain(s) with lengths between 8 and 24 carbon atoms. These compounds are primarily produced on the basis of natural fats and oils such as tallow fat, coconut oil and palm oil, resulting in mixed alkyl chain lengths in most of the products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anthony, C. (1982) The Biochemistry of Methylotrophs. Academic Press, London.

    Google Scholar 

  • Battersby, N.S. and Wilson, V. (1989) Survey of the anaerobic biodegradation potential of organic chemicals in digesting sludge. Appl. Environ. Microbiol. 55, 433–439.

    CAS  Google Scholar 

  • Boethling, R.S. (1984) Environmental fate and toxicity in wastewater treatment of quaternary ammonium surfactants. Water Res. 18, 1061–1076.

    Article  CAS  Google Scholar 

  • Brown, D. (1976). The assessment of biodegradability. A consideration of possible criteria for surface active substances, in Proceedings of VII International Congress on Surface-active Substances, 4, USSR national committee on surface active substances, Moscow, pp. 44–57.

    Google Scholar 

  • Colby, J. and Zatman, L.J. (1971) The purification and properties of a bacterial trimethylamine dehydrogenase. Biochem. J. 121, 9–10.

    Google Scholar 

  • Colby, J. and Zatman, L.J. (1973) Trimethylamine metabolism in obligate and facultative methylotrophs. Biochem. J. 132, 101–112.

    CAS  Google Scholar 

  • Dean-Raymond, D. and Alexander, M. (1977) Bacterial metabolism of quaternary ammonium compounds. Appl. Environ. Microbiol. 33, 1037–1041.

    CAS  Google Scholar 

  • Eady, R.R. and Large, P.J. (1968) Purification and properties of an amine dehydrogenase from Pseudomonas AM1 and its role in growth on methylamine. Biochem. J. 106, 245–255.

    CAS  Google Scholar 

  • Eady, R.R. and Large, P.J. (1971) Microbial oxidation of amines. Spectral and kinetic properties of primary amine dehydrogenase of Pseudomonas AM1. Biochem. J. 123, 757–771.

    CAS  Google Scholar 

  • Fendrich, C., Hippe, H. and Gottschalk, G. (1990) Clostridium halophilium sp. nov. and a marine species degrading betaine in the Stickland reaction. Arch. Microbiol. 154, 127–132.

    Article  CAS  Google Scholar 

  • Fenger, B.H., Mandrup, M., Rohde, G. and Kjaer Sorensen, J.C. (1973) Degradation of cationic surfactants in activated sludge pilot plants. Water Res. 7, 1195–1208.

    Article  CAS  Google Scholar 

  • Games, L.M., King, J.E. and Larson, R.J. (1982) Fate and distribution of a quaternary ammonium surfactant, octadecyltrimethylammonium chloride (OTAC) in wastewater treatment. Environ. Sci. Technol. 16, 483–188.

    Article  CAS  Google Scholar 

  • Gerike, P. (1982) Uber den biologischen Abbau und die Bioelimination von kationischen Tensiden. Tenside Surfact. Deterg. 19, 162–164

    CAS  Google Scholar 

  • Gerike, P., Fischer, W.K. and Jasiak, W. (1978) Surfactant quaternary ammonium salts in aerobic sewage digestion. Water Res. 12, 1117–1122.

    Article  CAS  Google Scholar 

  • Gerike, P., Holtman, W. and Jasiak, W. (1984) A test for detecting recalcitrant metabolites. Chemosphere 13, 121–141.

    Article  CAS  Google Scholar 

  • Ghisalba, O. and Kuenzi, M. (1983) Biodegradation and utilization of quaternary alkylammonium compounds by specialized methylotrophs. Experientia 39, 1264–1271.

    Article  CAS  Google Scholar 

  • Hampton, D. and Zatman, L.J. (1973) The metabolism of tetramethylammonium chloride by bacterium 5H2. Biochem. Soc. Trans. 1, 667–668.

    CAS  Google Scholar 

  • Heythuysen, J.H.F.G. and Hansen, T.A. (1989) Betaine fermentation and oxidation by marine Desulfuromonas strains. Appl. Environ. Microbiol. 55, 965–969.

    Google Scholar 

  • Holman, W.F. (1981) Estimating the environmental concentrations of consumer product components, in Aquatic Toxicology and Hazard Assessment Fourth Conference ASTM STP 737, ed. D.R. Branson and K.L. Dickson. American Society for Testing and Materials, Philadelphia, pp.159–182.

    Google Scholar 

  • Huber, L.H. (1987) Ecological behaviour of cationic surfactants from fabric softeners in aquatic environment. J. Am. Oil Chem. Soc. 61, 377–382.

    Article  Google Scholar 

  • Itoh, S. and Naito, S. (1982) Studies on the biodegradation test method of chemical substances III. Ultimate biodegradabilities of cationic/anionic surfactant-complexes. Yukagaku 31, 277–280.

    CAS  Google Scholar 

  • Janicke, W. and Hilge, G. (1979) Biologisches Abbauverhalten von Anion/Kationtenside-Komplexen unter den aeroben und anaeroben Bedingungen der Abwasser-bzw Schlammbehandlung. Tenside Surfact. Deterg. 16, 117–122.

    Google Scholar 

  • Jarman, T.R., Eady, R.R. and Large, P.J. (1970) An enzymatically active P-420-type cytochrome involved in the mixed-function dimethyl oxidase system of Pseudomonas aminovorans. Biochem. J. 119, 55–56.

    Google Scholar 

  • Kappeler, T.U. (1982) The aquatic toxicity of distearyldimethylammonium chloride (DSDMAC) and its ecological significance. Tenside Surfact. Deterg. 19, 157–161.

    Google Scholar 

  • King, G.M. (1984) Metabolism of trimethylamine, choline, and glycine betaine by sulphate-reducing and methanogenic bacteria in marine sediments. Appl. Environ. Microbiol. 48, 719–725.

    CAS  Google Scholar 

  • Kortstee, G.J.J. (1970) The aerobic decomposition of choline by micro-organisms. I The ability of aerobic organisms, particularly coryneform bacteria, to utilize choline as sole carbon and nitrogen source. Arch. Microbiol. 71, 235–244.

    CAS  Google Scholar 

  • Krzeminski, S.F., Martin, J.J. and Brackett, C.K. (1973) The environmental impact of a quaternary ammonium bactericide. Household Pers. Prod. Ind. 10, 22–24.

    CAS  Google Scholar 

  • Kupfer, W. (1982) Spurenanalytik von kationischen Tensiden unter den speziellen Bedingungen im Wasser und Abwasser. Tenside Surfact. Deterg. 19, 158–161.

    CAS  Google Scholar 

  • Large, P.J. (1971) Non-oxidative demethylation of trimethylamine-N-oxide by Pseudomonas aminovorans. Fed. Eur. Biochem. Soc. Lett. 18, 297–300.

    Article  CAS  Google Scholar 

  • Large, P.J., Boulton, C.A. and Crabbe, M.J.C. (1972) The reduced nicotinamide-adenine dinu-cleotide phosphate- and oxygen-dependent N-oxygenation of trimethylamine by Pseudomonas aminovorans. Biochem. J. 128, 137–138.

    Google Scholar 

  • Larson, R.J. (1983) Comparison of biodegradation rates in laboratory screening studies with rates in natural water. Residue Rev. 85, 159–171.

    Article  CAS  Google Scholar 

  • Larson, RJ. and Vashon, R.D. (1983) Adsorption and biodegradation of cationic surfactants in laboratory and environmental systems. Dev. Ind. Microbiol. 24, 425–434.

    CAS  Google Scholar 

  • Lewis, M.A. and Hamm, B.G. (1986) Environmental modification of the photosynthetic response of lake plankton to surfactants and significance to a laboratory-field comparison. Water Res. 20 (12), 1575–1582.

    Article  CAS  Google Scholar 

  • Lewis, M.A. and Suprenant, D. (1983) Comparative acute toxicities of surfactants to aquatic invertebrates. Ecotoxicol. Environ. Safety. 7, 312–322.

    Article  Google Scholar 

  • Lewis, M.A. and Wee, V.T. (1983) Aquatic safety assessment for cationic surfactants. Environ. Toxicol. Chem. 2, 105–118.

    Article  CAS  Google Scholar 

  • Lewis, M.A., Taylor, M.J. and Larson, R.J. (1986) Structural and functional response of natural phytoplankton and periphyton communities to a cationic surfactant with considerations on environmental fate, in ASTM Spec. Techn. Puhl., STP 920 pp. 241–268.

    Google Scholar 

  • Mackrell, J.A. and Walker, J.R.L. (1978) The biodegradation of quaternary ammonium compounds. Int. Biodeterior. Bull. 14, 77–83.

    CAS  Google Scholar 

  • Masuda, F., Machida, S. and Kanno, M. (1976) Studies on the biodegradability of some cationic surfactants, in Proceedings of VII International Congress on Surface-active Substances, 4, USSR national committee on surface active substances, Moscow, pp. 129–138.

    Google Scholar 

  • May, A. and Neufahrt, A. (1976) Zum okologischen Verhalten von Kationtensiden, 3 Mitt.: Uber das Verhalten von Distearyldimethylammoniumclorid in Belebtschlamm-anlagen. Tenside Surfact. Deterg. 13, 65–69.

    CAS  Google Scholar 

  • Meiberg, J.B.M. and Harder, W. (1978) Aerobic and anaerobic metabolism of trimethylamine, dimethylamine and methylamine in Hyphomicrobium X. J. Gen. Microbiol. 106, 265–276.

    CAS  Google Scholar 

  • Miura, K., Yamanaka, K., Sangai, T., Yoshimura, K. and Hayashi, N. (1979) Application of the biological oxygen consumption measurement technique to the biodegradation test of surfactants. Yakagaku 28, 351–355.

    CAS  Google Scholar 

  • Myers, P.A. and Zatman, L.J. (1971) The metabolism of trimethylamine-N-oxide by Bacillus PM6. Biochem. J. 121, 10 pp.

    Google Scholar 

  • Neufarth, A. and Pleschke, D. (1982) Studies of abiotic and biotic degradation processes on cationic surfactants XIII. Jourdanos Com. Espanol Deterg. 12, 13–15

    Google Scholar 

  • Owen, W.F., Stuckey, D.C., Healey, J.B., Young, L.Y. and McCarthy, P.L. (1979) Bioassay for monitoring biochemical methane potential and anaerobic toxicity. Water Res. 3, 485–492.

    Article  Google Scholar 

  • Pitter, P. and Chudoba, J. (1990) Biodegradability of Organic Substances in the Aquatic Environment. Section IV Aliphatic Amines and their Derivatives. CRC Press, Boca Raton.

    Google Scholar 

  • Pitter, P. and Svitalkova, J. (1961) Biodegradation of cationic agents in laboratory models of activated sludge tanks. Sb VSChT 52, 25–42.

    Google Scholar 

  • Puchta, P., Krings, P. and Sandkühler, P. (1993) A new generation of softeners. Tenside Surfact. Deterg. 30(3), 186–192.

    CAS  Google Scholar 

  • Ruiz Cruz, J. (1981) Pollution of natural water courses by synthetic detergents. XVII Influence of temperature and other variables on the biodegradation of cationic agents in river water. Grasas Aceites 32, 147–153.

    CAS  Google Scholar 

  • Ruiz Cruz, J. and Dobarganes, M.C. (1978) Pollution of natural waters by synthetic detergents XIII Biodegradation of nonionic surfactants in river water and determinations of their biodegradability by different test methods. Grasas Aceites 29, 1–8.

    CAS  Google Scholar 

  • Schöberl, P., Bock, K.J. and Huber L. (1988) Okologisch relevante Daten von Tensiden in Waschund Reinigungsmitteln. Tenside Surfact. Deterg. 25, 86–98.

    Google Scholar 

  • Simms, J.R., Woods, D.A., Walley, D.R., Keough, T., Schwab, B.S. and Larson, R.J. (1992) Integrated approach to surfactant environmental safety assessment: Fast bombardment mass spectrometry and liquid scintillation counting to determine the mechanism and kinetics of surfactant biodegradation. Anal. Chem. 64, 2951–2957.

    Article  CAS  Google Scholar 

  • Swisher, R.D. (1987) Surfactant Biodegradation. 2nd Edition, revised and expanded. Surfactant science series, Volume 18, Marcel Dekker, New York and Basel.

    Google Scholar 

  • Sullivan, D.E. (1983) Biodegradation of cationic surfactants in activated sludge. Water Res. 17, 1145–1151.

    Article  CAS  Google Scholar 

  • Topping, B.W. and Waters, J. (1982) Monitoring of cationic surfactants in sewage treatment plants. Tenside Surfact. Deterg. 19, 164–169.

    CAS  Google Scholar 

  • Valls, M., Bayona, J.M., Albaiges, J. and Mansour, M. (1990) Fate of cationic surfactants in the marine environment, II: photooxidation of long-chain alkylamines in aqueous media. Chemosphere 20, 599–608.

    Article  CAS  Google Scholar 

  • van Ginkel, C.G. and Kolvenbach, M. (1991) Relations between structure of quaternary alkyl ammonium salts and their biodegradability. Chemosphere 23, 281–289.

    Article  Google Scholar 

  • van Ginkel, C.G., van Dijk, J.B. and Kroon, A.G.M. (1992) Metabolism of hexadecyltrimethylam-monium chloride in Pseudomonas strain Bl. Appl. Environ. Microbiol. 58 (9), 3083–3087.

    Google Scholar 

  • van Leeuwen, C.J., Roghair, C., de Greef, J. and de Nijs, T. (1990) Wasverzachter II resultaten van aanvullend onderzoek. H 20, 23 (11), 294–299 (in Dutch).

    Google Scholar 

  • Vives-Rego, J., Vaque, M.D., Sanchez Leal, J. and Parra, J. (1987) Surfactants biodegradation in sea water. Tenside Surfact. Deterg. 24, 20–22.

    CAS  Google Scholar 

  • Waters, J. and Kupfer, W. (1976) The determination of cationic surfactants in the presence of anionic surfactant in biodegradation test liquors. Anal. Chim. Acta 85, 241–251.

    Article  CAS  Google Scholar 

  • Waters, J., Kleister, H.H., How, M.J., Barratt, M.D., Birch, R.R., Fletcher, R.J., Haigh, S.D., Hales, S.G., Marshall, S.J. and Pestell, T.C. (1991) A new rinse conditioner active with improved environmental properties. Tenside Surfact. Deterg. 28, 460–468.

    CAS  Google Scholar 

  • Wee, V.T. and Kennedy, J.M. (1982) Determination of trace levels of quaternary ammonium compounds in river water by liquid chromatography with conductometric detection. Anal. Chem. 54, 1631–1633.

    Article  CAS  Google Scholar 

  • Yoshimura, K., Machida, S. and Masuda, F. (1980) Biodegradation of long chain alkylamines. J. Am. Oil Chem. Soc. 57, 238–241.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

van Ginkel, C.G. (1995). Biodegradability of cationic surfactants. In: Karsa, D.R., Porter, M.R. (eds) Biodegradability of Surfactants. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1348-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1348-9_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4588-9

  • Online ISBN: 978-94-011-1348-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics