Skip to main content

Genetic engineering of lactobacilli, leuconostocs and Streptococcus thermophilus

  • Chapter

Abstract

The lactic acid bacteria represent a large heterogeneous family of microorganisms that share the property of converting fermentable carbohydrates primarily to lactic acid. The homofermentative lactic acid bacteria convert one mole of glucose to two moles of lactic acid, while the heterofermentative lactic acid bacteria convert one mole of glucose to one mole of lactic acid and a variety of other products such as acetic acid, ethanol and CO2. The family includes very diverse species that naturally occupy quite different ecological niches. Lactic acid bacteria are found on plant surfaces, on external cavities of human and animal bodies, as commensal colonizers of the gastrointestinal systems of vertebrates, as well as in sewage and manure. They are used extensively for the manufacture of a variety of fermented food and feed products. Although they are best known for application in the preparation of fermented dairy products (i.e. cheeses, sour milks, yogurts), lactic acid bacteria are also used in the pickling of vegetables, baking, wine-making, curing of fish, meats and sausages, preparation of silage, remediation of biowastes and the commercial manufacture of lactic acid (Kandler and Weiss, 1986). Due to the global economic importance of the agro-food sector, our knowledge of the lactic acid bacteria has benefited from an intensive research activity over the last decade. For economic, practical and historical reasons attention has been focused primarily on lactococci and the streptococci of medical importance.

Keywords

  • Lactic Acid Bacterium
  • Lactobacillus Plantarum
  • Lactobacillus Acidophilus
  • Bacteriocin Production
  • Lactobacillus Casei

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-94-011-1340-3_6
  • Chapter length: 42 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-94-011-1340-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.99
Price excludes VAT (USA)
Hardcover Book
USD   279.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahmad, K.A. and Stewart, G.S.A.B. (1988) Cloning of the lux genes into Lactobacillus casei and Streptococcus lactis: phosphate-dependent light production. Biochem. Soc. Trans., 1068.

    Google Scholar 

  • Ahn, C., Collins-Thompson, C., Duncan, C. and Stiles, M.E. (1992) Mobilization and location of the genetic determinant of chloramphenicol resistance from Lactobacillus plantarum CAT2R. Plasmid, 27, 169–176.

    PubMed  CAS  Google Scholar 

  • Ahrn, S., Molin, G. and Ståhl, S. (1989) Plasmids in Lactobacillus isolated from meat and meat products. Syst. Appl. Microbiol., 11, 320–325.

    Google Scholar 

  • Alpert, C.A. and Chassy, B.M. (1988) Molecular cloning and nucleotide sequence of the factor III(lac) gene of Lactobacillus casei. Gene, 62, 277–288.

    PubMed  CAS  Google Scholar 

  • Alpert, C.A. and Chassy, B.M. (1990) Molecular cloning and DNA sequence of lacE, the gene encoding the lactose-specific enzyme II of the phosphotransferase system of Lactobacillus casei: Evidence that a cysteine residue is essential for sugar phosphorylation. J. Biol. Chem., 265(36), 22560–22561.

    Google Scholar 

  • Arendt, E.K., Lonvard, A. and Hammes, W.P. (1991) Lysogeny of Leuconostoc oenos. J. Gen. Microbiol., 137, 2135–2139.

    PubMed  CAS  Google Scholar 

  • Arendt, E.K., Neve, H. and Hammes, W.P. (1991b) Characterization of phage isolates from a phage-carrying culture of Leuconostoc oenos 58N. Appl. Microbiol., and Biotech., 34(2), 220–224.

    Google Scholar 

  • Atlan, D., Laloi, P. and Portalier, R. (1990) X-Prolyl-dipeptidyl aminopeptidase of Lactobacillus delbruecklii spp. bulgaricus: characterization of the enzyme and isolation of deficient mutants. Appl. Environ. Microbiol., 56, 2174–2179.

    PubMed  CAS  Google Scholar 

  • Axelsson, L.T., Ahrné, S.E.I., Andersson, M.C. and Stahl, S.R. (1988) Identification and cloning of a plasmid-encoded erythromycin resistance determinant from Lactobacillus reuteri. Plasmid, 20, 171–174.

    PubMed  CAS  Google Scholar 

  • Baik, B.H. and Pack, M.Y. (1990) Expression of a Bacillus subtilis endoglucanase gene in Lactobacillus acidophilus. Biotechnol. Lett., 12, 330–334.

    Google Scholar 

  • Bates, E.E. and Gilbert, H.J. (1989) Characterization of a cryptic plasmid from Lactobacillus plantarum. Gene, 85, 253–258.

    PubMed  CAS  Google Scholar 

  • Bates, E.E.M., Gilbert, H.J., Hazlewood, G.P., Huckle, J., Laurie, J.I. and Mann, S.P. (1989) Expression of a Clostridium thermocellum endoglucanase gene in Lactobacillus plantarum. Appl. Environ. Microbiol., 55., 2095–2097.

    CAS  Google Scholar 

  • Benbadis, L., Faelen, M., Slos, P., Fazel, A. and Mercenier, A. (1990) Characterization and comparison of virulent bacteriophages of Streptococcus thermophilus isolated from yogurt. Biochimie, 72(12), 855–862.

    PubMed  CAS  Google Scholar 

  • Benbadis, L., Garel, J.-R. and Hartley, D.L. (1991) Purification, properties and sequence specificity of SslI, a new type II restriction endonuclease from Streptococcus salivarius subsp. thermophilus. Appl. Environ. Microbiol., 57, 3677–3678.

    CAS  Google Scholar 

  • Bently, R.W., Leigh, J.A. and Collins, M.D. (1991) Intergeneric structure of Streptococcus based on comparative analysis of small- subunit rRNA. Int. J. System. Bacteriol., 41, 487–494.

    Google Scholar 

  • Boizet, B., Flickinger, J.L. and Chassy, B.M. (1988) Transfection of Lactobacillus bulgaricus protoplasts by phage DNA. Appl. Environ. Microbiol., 54, 3014–3018.

    PubMed  CAS  Google Scholar 

  • Boot, H.J., Kolen, C.P.A.M., Van Noort, J.H. and Pouwels, P.H. (1993) 5-layer protein of Lactobacillus acidophilus ATCC 4356: Purification, expression in Eschericha coli and nucleotide sequence of the corresponding gene. J. Bacteriol., in press.

    Google Scholar 

  • Bouia, A., Bringel, F., Frey, L., Kammerer, B., Belarbi, A., Goyonvarch, A., and Hubert, J.C. (1989) Structural organization of pLP-1, a cryptic plasmid from Lactobacillus plantarum CCM1904. Plasmid, 22(3), 185–192.

    PubMed  CAS  Google Scholar 

  • Breidt, F.J. and Stewart, G.C. (1986) Cloning and expression of the gene phospho-β-galactosidase of Staphylococcus aureus in Escherichia coli. J. Bacteriol., 166, 1061–1066.

    PubMed  CAS  Google Scholar 

  • Breidt, F.J. and Stewart, G.C. (1987) Nucleotide and deduced amino acid sequences of the Staphylococcus aureus phospho-β-galactosidase gene. Appl. Environ. Microbiol., 53, 969–973.

    PubMed  CAS  Google Scholar 

  • Bringel, F., Frey, L. and Hubert, J.C. (1989) Characterization, cloning, curing, and distribution in lactic acid bacteria of pLP1, a plasmid from Lactobacillus plantarum CCM 1904 and its use in shuttle vector construction. Plasmid, 22(3), 193–202.

    PubMed  CAS  Google Scholar 

  • Buvinger, W.E. and Riley, M. (1985) Nucleotide sequence of Klebsiella pneumoniae lac genes. J. Bacteriol., 163, 850–857.

    PubMed  CAS  Google Scholar 

  • Chang, B.-S., and Mahoney, R.R. (1989) Purification and thermostability of β-galactosidase (lactase) from an autolytic strain of Streptococcus salivarius subsp. thermophilus. J. Dairy Res., 56, 117–127.

    PubMed  CAS  Google Scholar 

  • Chassy, B.M. (1987) Prospects for the genetic manipulation of lactobacilli. FEMS Microbiol. Rev., 46, 297–312.

    CAS  Google Scholar 

  • Chassy, B.M. and Alpert, C.A. (1989) Molecular characterization of the plasmid-encoded lactose-PTS of Lactobacillus casei. FEMS Microbiol. Rev., 63(1–2), 157–166.

    CAS  Google Scholar 

  • Chassy, B.M. and Flickinger, J.L. (1987) Transformation of Lactobacillus casei by electroporation. FEMS Microbiol. Lett., 44, 173–177.

    CAS  Google Scholar 

  • Chassy, B.M., Gibson, E.V. and Giuffrida, A. (1978) Evidence for plasmid-associated lactose metabolism in Lactobacillus casei subsp. casei. Current Microbiol., 1, 141–144.

    CAS  Google Scholar 

  • Chassy, B.M., Mercenier, A. and Flickinger, J. (1988) Transformation of bacteria by electroporation. Trends Biotechnol., 6, 303–309.

    CAS  Google Scholar 

  • Chassy, B.M. and Rokaw, E. (1981) Conjugal transfer of plasmid-associated lactose metabolism in Lactobacillus casei subsp. casei. In Molecular Biology, Pathogenesis and Ecology of Bacterial Plasmids, New York: Plenum Press, p 590.

    Google Scholar 

  • Christiaens, H., Leer, R.J., Pouwels, P.H. and Verstraete, W. (1992) Cloning and expression of a conjugated bile acid hydrolase gene from Lactobacillus plantarum using a direct plate assay. Appl. Environ. Microbiol., 58, 3792–3798.

    PubMed  CAS  Google Scholar 

  • Claassen, E., Pouwels, P.H., Posno, H. and Boersha, W. (1993) Development of safe oral vaccines based on Lactobacillus as a vector. In: Recombinant Vaccines: New Vaccinology (ed. E. Kurstak) Int. Comp. Virology Org., Montreal, in press.

    Google Scholar 

  • Cocconcelli, P.S., Gasson, M.J., Morelli, L. and Bottazzi, V. (1991) Single-stranded DNA plasmid, vector construction and cloning of Bacillus stearothermophilus α-amylase in Lactobacillus. Research in Microbiol., 142(6), 643–652.

    CAS  Google Scholar 

  • Cocconcelli, P.S. Morelli, L., Vescovo, M. and Bottazzi, V. (1986) Intergeneric protoplast fusion in lactic acid bacteria. FEMS Microbiol Lett., 35, 211–214.

    CAS  Google Scholar 

  • Collins, M.D., Rodrigues, U., Ash, C., Aguirre, M., Farrow, J.A.E., Martinez-Murcia, A., Phillips, B.A., Williams, A.M. and Wallbanks, S. (1991) Phylogenetic analysis of the genus Lactobacillus and related lactic acid bacteria as determined by reverse transcriptase sequencing of 16S rRNA. FEMS Microbiol. Lett., 77(1), 5–12.

    CAS  Google Scholar 

  • Copeland, W.C., Domena, J.D. and Robertus, J.D. (1989) The molecular cloning, sequence and expression of the hdc B gene from Lactobacillus 30A. Gene, 85(1), 259–266.

    PubMed  CAS  Google Scholar 

  • Dao, M.L. and Ferretti, J.J. (1985) Streptococcus-Escherichia coli shuttle vector pSA3 and its use in the cloning of streptococcal genes. Appl. Environ. Microbiol., 49, 115–119.

    PubMed  CAS  Google Scholar 

  • David, S. (1992) Genetics of mesophilic citrate fermenting lactic acid bacteria. Doctoral Dissertation, Rijksuniversiteit Wageningen.

    Google Scholar 

  • David, S., Simons, G. and de Vos, W.M. (1989) Plasmid transformation by electroporation of Leuconostoc paramesenteroides and its use in molecular cloning. Appl. Environ. Microbiol., 55, 1483–1489.

    PubMed  CAS  Google Scholar 

  • David, S., Stevens, H., van Riel, M., Simons, G. and de Vos, W.M. (1992) Leuconostoc lactis β-galactosidase is encoded by two overlapping genes. J. Bacteriol., 174, 4475–481.

    PubMed  CAS  Google Scholar 

  • Davidson, B.E., Powell, I.B. and Hillier, A.J. (1990) Temperate bacteriophages and lysogeny in lactic acid bacteria. FEMS Microbiol. Rev., 87, (1–2), 79–90.

    CAS  Google Scholar 

  • Davis, C., Silveira, N.F.A. and Fleet, G.H. (1985) Occurrence and properties of bacteriophages of Leuconostoc oenos in Australian wines. Appl. Environ. Microbiol., 50, 872–876.

    PubMed  CAS  Google Scholar 

  • De Los Reyes-Gavilan, C.G., Limsowtin, G.K.Y., Sechaud, L. and Veaux, M. (1990) Evidence for a plasmid-linked restriction-modification system in Lactobacillus helveticus. Appl. Environ. Microbiol., 56(11), 3412–3419.

    Google Scholar 

  • De Rossi, E., Brigidi, P., Rossi, M., Matteuzzi, D. and Riccardi, G. (1991) Characterization of Gram-positive broad host-range plasmids carrying a thermophilic replicon. Research in Microbiol., 142(4), 389–396.

    Google Scholar 

  • De Rossi, E. et al. (1989) Preliminary studies on the correlation between the plasmid plHJ1 and its proteolytic activity in Lactobacillus helveticus S36.2. Physical mapping and molecular cloning of the plasmid in Escherichia coli. Microbiologica, 12, 273–276.

    Google Scholar 

  • De Vos, W.M. (1987) Gene cloning and expression in lactic streptococci. FEMS Microbiol. Rev., 46, 281–295.

    Google Scholar 

  • De Vos, W.M., Boerrigter, I., Van Rooyen, R.J., Reiche, B. and Hengstenberg, W. (1990) Characterization of the lactose-specific enzymes of the phosphototransferase system in Lactococcus lactis. J. Biol. Chem., 265(36), 22554–22560.

    PubMed  Google Scholar 

  • De Vos, W.M., Simons, G. and David, S. (1989) Gene organization and expression in the mesophilic lactic acid bacteria. J. Dairy Sci., 72, 3398–3405.

    Google Scholar 

  • Debarbouillé, M., Martin-Verstraete, I., Arnaud, M., Klier, A. and Rapoort, G. (1991) Positive and negative regulation controlling expression of the sac genes in Bacillus subtilis. Res. Microbiol., 142, 757–764.

    PubMed  Google Scholar 

  • Dunny, G.H., Lee, L.N. and LeBlanc, D.J. (1991) Improved electroporation and cloning vector system for Gram-positive bacteria. Appl. Environ. Microbiol., 57, 1194–1201.

    PubMed  CAS  Google Scholar 

  • Duwat, P., Ehrlich, D.S. and Gruss, A. (1992). Use of degenerate primers for polymerase chain reaction cloning and sequencing of the Lactococcus lactis spp. lactis recA gene. Appl. Environ. Microbiol., 58, 2674–2678.

    PubMed  CAS  Google Scholar 

  • Eggimann, B. and Bachmann, H. (1980) Purification and partial characterization of an aminopeptidase from Lactobacillus lactis. Appl. Environ. Microbiol., 40, 876–882.

    PubMed  CAS  Google Scholar 

  • Fantuzzi, L. (1991) Instability of lactose and citrate metabolism of Leuconostoc strains. Biotechnol. Lett., 13, 433–436.

    CAS  Google Scholar 

  • Farrow, J.A.E. and Collins, M.D. (1984) DNA base composition, DNA-DNA homology and long-chain fatty acid studies on Streptococcus thermophilus and Streptococcus salivarius. J. Gen. Microbiol., 130, 357–362.

    PubMed  CAS  Google Scholar 

  • Fayard, B., Haefliger, M. and Accolas, J.P. (1993) Interaction of temperate bacteriophages of Streptococcus salivarius subsp. thermophilus with lysogenic indicators affect phage DNA restriction patterns and host ranges. J. Dairy Sci., in press.

    Google Scholar 

  • Fernandes, C.F., Shahani, K.M. and Ames, M.A. (1987) Therapeutic role of dietary lactobacilli and lactobacillic fermented dairy products. FEMS Microbiol. Rev., 46, 343–356.

    Google Scholar 

  • Fitzgerald, G.F. and Gasson, M.J. (1988) In vivo gene transfer systems and transposons. Biochimie, 70(4), 489–502.

    PubMed  CAS  Google Scholar 

  • Flickinger, J.L., Porter, E.V. and Chassy, B.M. (1986) Molecular cloning of a plasmid-encoded β-galactosidase from Lactobacillus casei. In 86th Ann. Meeting Amer. Soc. Microbiol., ASM Publications.

    Google Scholar 

  • Fremaux, C. (1990) Application de la biologie moléculaire à la connaissance des bactéries lactiques du vin — identification par sondes nucléiques — étude de plasmides de Leuconostoc oenos. Doctoral Dissertation, University of Bordeaux, France.

    Google Scholar 

  • Friedland, I.R., Snipelisky, M. and Khoosal, M. (1990) Meningitis in a neonate caused by Leuconostoc sp. J. Clin. Microbiol., 28(9), 2125–2126.

    PubMed  CAS  Google Scholar 

  • Gaetje, G., Mueller, V. and Gorrschalk, G. (1991). Lactic acid excretion via carrier-mediated facilitated diffusion in Lactobacillus helveticus. Applied Microbiology and Biotechnology, 34(6), 778–782.

    CAS  Google Scholar 

  • Gaier, W. (1991) Untersuchungen zur transformation und gene expression bei Laktobazillen. Doctoral Dissertation, University of Hohenheim, Germany.

    Google Scholar 

  • Gaier, W., Vogel, R.F. and Hammes, W.P. (1992) Cloning and expression of the lysostaphin gene in Bacillus subtilis and Lactobacillus casei. Lett. Appl. Microbiol., 14, 72–76.

    PubMed  CAS  Google Scholar 

  • Gasson, M.J. (1980) Production, regeneration and fusion of protoplasts in lactic streptococci. FEMS Microbiol. Lett., 9, 99–102.

    Google Scholar 

  • Gasson, M.J. (1990) In vivo genetic systems in lactic acid bacteria. FEMS Microbiol. Rev., 87(1–2), 43–60.

    CAS  Google Scholar 

  • Gibson, E.M., Chace, N.M., London, S.B. and London, J. (1979) Transfer of plasmid-mediated antibiotic resistance from streptococci to lactobacilli. J. Bacteriol., 137, 614–619.

    PubMed  CAS  Google Scholar 

  • Gilliland, S.E. (1990) Health and nutritional benefits from lactic acid bacteria. FEMS Microbiol. Rev., 87(1–2), 175–188.

    Google Scholar 

  • Graves, M.C. and Rabinowitz, J.C. (1986). In vivo and in vitro transcription of the Clostridium pasteurianum ferredoxin gene. J. Biol. Chem., 261, 11409–11415.

    PubMed  CAS  Google Scholar 

  • Gruss, A. and Erchlich, D. (1989) The family of highly interrelated single-stranded deoxyribonucleic acid plasmids. Microbiol. Rev., 53, 231–241.

    PubMed  CAS  Google Scholar 

  • Hall, B.G., Betts, P.W. and Wootton, J.C. (1989) DNA sequence analysis of artificially evolved ebg enzyme and ebg repressor genes. Genetics, 123, 635–648.

    PubMed  CAS  Google Scholar 

  • Hancock, K.R., Rockman, E., Young, C.A., Pearce, L., Maddox, I.S. and Scott, D.B. (1991). Expression and nucleotide sequence of the Clostridium acetobutylicum β-galactosidase gene cloned in Escherichia coli. J. Bacteriol., 173, 3084–3095.

    PubMed  CAS  Google Scholar 

  • Handwerger, S., Horowitz, H., Coburn, K., Kolokathis, A. and Wormser, G.P. (1990) Infection due to Leuconostoc sp. — 6 cases and review. Rev. of Infect. Diseases, 12(4), 602–610.

    CAS  Google Scholar 

  • Harlander, S. (1987) Gene transfer systems in lactic streptococci. In J.J. Ferretti and R.C. Curtiss (eds.), Streptococcal Genetics Washington, D.C.: ASM Publications, pp. 229–233.

    Google Scholar 

  • Hastings, J.W. (1992). Cloning and nucleotide sequence of a Leuconostoc bacteriocin operon. In 92nd General Meeting of the American Society for Microbiology, 92, New Orleans, Louisiana, USA, Abstr. Gen. Meet. Am. Soc. Microbiol., p. 333.

    Google Scholar 

  • Hastings, J.W., Sailer, M., Johnson, K., Roy, K.L., Vederas, J.C. and Stiles, M.E. (1991) Characterization of Leucocin A-Val 187 and cloning of the bacteriocin gene from Leuconostoc gelidum. J. Bacteriol., 173, 7491–7500.

    PubMed  CAS  Google Scholar 

  • Hengstenberg, W., Penberthy, W.K., Hill, K.L. and Morse, M.L. (1968) Metabolism of lactose by Staphylococcus aureus. J. Bacteriol., 96, 2187–2188.

    PubMed  CAS  Google Scholar 

  • Henick-Kling, T., Lee, T.H. and Nicholas, D.J.D. (1986) Inhibition of bacterial growth and malolactic fermentation in wine by bacteriophage. Appl. Bacteriol., 86, 287–293.

    Google Scholar 

  • Higgins, C.F., Ames, G.F.L., Barnes, W.M., Clement, J.M. and Hofnug, M. (1982). A novel intercistronic regulatory element of prokaryotic operons. Nature, 298, 760–762.

    PubMed  CAS  Google Scholar 

  • Hirata, H., Fukazawa, T., Negoro, S. and Okada, H. (1986). Structure of a β-galactosidase gene of Bacillus stearothermophilus. J. Bacteriol., 166, 122–121.

    Google Scholar 

  • Holck, A. and Naes, H. (1992) Cloning, sequencing, and expression of the gene encoding the cell-envelope-associated proteinase from Lactobacillus paracasei spp. paracasei NCDO 151. J. Gen. Microbiol., 138, 1353–1364.

    PubMed  CAS  Google Scholar 

  • Hutkins, R.W. and Morris, H.A. (1987) Carbohydrate metabolism by Streptococcus thermophilus: a review. J. Food Protect., 50, 876–894.

    CAS  Google Scholar 

  • Hutkins, R.W. and Ponne, C. (1991) Lactose uptake driven by galactose efflux in Streptococcus thermophilus — Evidence for a galactose-lactose antiporter. Appl. Environ. Microbiol., 57(4), 941–944.

    PubMed  CAS  Google Scholar 

  • Imam, S.H., Burgess-Cassler, A., Cote, G.L., Gordon, S.H. and Baker, F.L. (1991) A study of cornstarch granule digestion by an unusually high molecular weight α-amylase secreted by Lactobacillus amylovorus. Curr. Microbiol., 22(6), 365–370.

    CAS  Google Scholar 

  • Ishiwa, H. and Iwata, S. (1980) Drug resistance plasmids in Lactobacillus fermentum. J. Gen Appl. Microbiol., 26, 71–74.

    CAS  Google Scholar 

  • Iwata, M., Mada, M. and Ishiwa, H. (1986) Protoplast fusion of Lactobacillus fermentum. Appl. Environ. Microbiol., 52, 392–393.

    PubMed  CAS  Google Scholar 

  • Jacob, S., Allmansberger, R., Gartner, D. and Hillen, W. (1991) Catabolite repression of the operon for xylose utilization from Bacillus subtilis W23 is mediated at the level of transcription and depends on a cis site in the xylA reading frame. Mol. Gen. Genet., 229, 189–196.

    PubMed  CAS  Google Scholar 

  • Jahns, A., Schafer, A., Geis, A. and Teuber, M. (1991) Identification, cloning and sequencing of the replication region of Lactococcus lactis spp. lactis biovar. diacetylactis Bu2 citrate plasmid pSL2. FEMS Microbiol. Lett., 80, 253–258.

    CAS  Google Scholar 

  • Janzen, T., Kleinschmidt, J., Neve, H. and Geis, A. (1992) Sequencing and characterization of pST1 a cryptic plasmid from Streptococcus thermophilus. FEMS Microbiol. Lett., 95, 175–180.

    CAS  Google Scholar 

  • Jarvis, A.W. (1989) Bacteriophages of lactic acid bacteria. J. Dairy Sci., 72, 3406–3428.

    Google Scholar 

  • Jimeno, J., Casey, M. and Hofer, F. (1984) The occurrence of β-galactosidase and P-β-galactosidase in Lactobacillus casei strains. FEMS Microbiol. Lett., 25, 275–278.

    CAS  Google Scholar 

  • Johansen, E. and Kibenich, A. (1992) Isolation and characterization of IS1165 an insertion sequence of Leusonostoc mesenteroides spp. cremoris and other lactic acid bacteria. Plasmid, 27, 200–206.

    PubMed  CAS  Google Scholar 

  • Jones, S. and Warner, P.J. (1990) Cloning and expression of a-amylase from Bacillus amyloliquefaciens in a stable plasmid vector in Lactobacillus plantarum. Lett. in Appl. Microbiol., 11(4), 214–219.

    CAS  Google Scholar 

  • Josson, K., Soetaert, P., Michiels, F., Joos, H. and Mahillon, J. (1990) Lactobacillus hilgardii plasmid pLAB1000 consists of two functional cassettes commonly found in other Gram-positive organisms. J. of Bacteriol., 172(6), 3089–3099.

    CAS  Google Scholar 

  • Kaklij, G.S., Kelkar, S.M., Shenoy, M.A. and Sainis, K.B. (1991) Antitumor activity of Streptococcus thermophilus against fibrosarcoms: Role of T-cells. Cancer Lett., 56(1), 37–44.

    PubMed  CAS  Google Scholar 

  • Kalnins, A., Otto, K., Ruether, U. and Mueller-Hill, B. (1983) Sequence of the lacL gene of Escherichia coll. EMBO J, 2, 593–597.

    PubMed  CAS  Google Scholar 

  • Kaminogawa, S., Ninomiya, T. and Yamauchi (1984) Aminopeptidase profiles of lactic streptococci. J. Dairy Sci., 67, 2483–2492.

    CAS  Google Scholar 

  • Kandler, O. (1983) Carbohydrate metabolism in lactic acid bacteria. Antonie van Leeuwenhoek, 49, 209–224.

    PubMed  CAS  Google Scholar 

  • Kandler, O. and Weiss, N. (1986) Bergey’s Manual of Systematic Bacteriology. In P.H.A. Sneath, N.S. Mair, M.E. Sharpe, and J.G. Holt (eds.), Baltimore: Williams & Wilkins, pp. 1208–34.

    Google Scholar 

  • Khalid, N.M. and Marth, E.M. (1990) Purification and partial characterization of a prolyl-dipeptidyl aminopeptidase farm Lactobacillus helveticus CNRZ 32. Appl. Environ. Microbiol., 56, 381–388.

    PubMed  CAS  Google Scholar 

  • Kitao, S. and Nakano, E. (1992) Cloning of the sucrose phosphorylase gene from Leuconostoc mesenteroides and its overexpression using a ‘sleeper’ phage. J. Ferment, and Bioeng., 73, 179–184.

    CAS  Google Scholar 

  • Klaenhammer, T.R. (1987) Plasmid-directed mechanisms for bacteriphage defense in lactic streptococci. FEMS Micro. Rev., 46, 313–325.

    CAS  Google Scholar 

  • Klaenhammer, T.R. (1988) Bacteriocins of lactic acid bacteria. Biochimie, 70, 303–316.

    Google Scholar 

  • Klebanoff, S.J. and Coombs, R.W. (1991) Viricidal effect of Lactobacillus acidophilus on human immunodeficiency virus type 1: Possible role in heterosexual transmission. J. Exp. Med., 174(1), 289–292.

    PubMed  CAS  Google Scholar 

  • Kojic, M., Fira, D., Banina, A. and Topisirovic, L. (1991) Characterization of the cell wall-bound proteinase of Lactobacillus casei HN14. Appl. and Environ. Microbiol., 57(6), 1753–1757.

    CAS  Google Scholar 

  • Kok, J. (1990) Genetics of the proteolytic system of the lactic acid bacteria. FEMS Microbiol. Rev., 87(1–2), 15–42.

    CAS  Google Scholar 

  • Kok, J. (1991) Special-purpose cloning vectors for lactococci. In G.M. Dunny, P.P. Cleary, and L.L. McKay (eds.), Genetics and Molecular Biology of Streptococci, Lactococci and Enterococci, Washington, D.C.: ASM Publications, pp. 97–102.

    Google Scholar 

  • Kok, J., van der Vossen, J.M.B.M. and Venema, G. (1984) Construction of plasmid cloning vectors for lactic streptococci which also replicate in Bacillus subtilis and Escherichia coli. Appl Environ. Microbiol., 48, 726–731.

    PubMed  CAS  Google Scholar 

  • Kok, J. and Venema, G. (1988) Genetics of proteinases of lactic acid bacteria. Biochimie, 70, 475–488.

    PubMed  CAS  Google Scholar 

  • Kondo, J.K. and McKay, L.L. (1982) Transformation of Streptococcus lactis protoplasts by plasmid DNA. Appl. Environ. Microbiol., 43, 1213–1215.

    PubMed  CAS  Google Scholar 

  • Kreuzer, P., Gratner, D., Allmansberger, R. and Hillen, W. (1989) Identification and sequence analysis of the Bacillus subtilis xylR gene and xyl operator. J. Bacteriol., 171, 3840–3845.

    PubMed  CAS  Google Scholar 

  • Lahbib-Mansais, Y., Boizet, B., Dupont, L., Mata, M. and Ritzenthaler, P. (1992) Characterization of a temperate bacteriophage of Lactobacillus delbrueckii spp. bulgaricus and its interactions with the host cell chromosome. J. Gen. Microbiol., 138, 1139–1146.

    CAS  Google Scholar 

  • Larbi, D., Decaris, B. and Simonet, J.M. (1992) Different bacteriophage resistance mechanisms in Streptococcus salivarius subsp. thermophilus. J. Dairy Res., 59, 349–357.

    PubMed  CAS  Google Scholar 

  • Le Bourgeois, P., Lautier, M. and Ritzenthaler, P. (1993) Chromosome mapping in Lactic Acid Bacteria. FEMS Microbiol. Rev., 12, (1–3), 109–123.

    PubMed  Google Scholar 

  • Lee, W.T., Flynn, T.G., Lyons, C., and Levy, H.R. (1991) Cloning of the gene and amino acid sequence for glucose 6-phosphate dehydrogenase from Leuconostoc mesenteroides. J. Biol. Chem., 266, 13028–13034.

    PubMed  CAS  Google Scholar 

  • Leenhouts, K.J., Tolner, B., Bron, S., Kok, J., Venema, G. and Seegers, J. (1991) Nucleotide sequence and characterization of the broad-host-range lactococcal plasmid pWV01. Plasmid, 26, 55–56.

    PubMed  CAS  Google Scholar 

  • Leer, R., Christiaens, H., Peters, L., Posno, M. and Pouwels, P. (1993) Gene-disruption in Lactobacillus plantarum strain 80 by site-specific recombination: isolation of a mutant strain deficient in conjugated bile salt hydrolase activity. Mol. Gen. Genet., in press.

    Google Scholar 

  • Leer, R.J., Van Luijk, N., Posno, M. and Pouwels, P.H. (1992) Structural and functional analysis of two cryptic plasmids from Lactobacillus pentosus MD353 and Lactobacillus plantarun ATCC 8014. Mol. Gen. Genet., 234, 265–274.

    PubMed  CAS  Google Scholar 

  • Leong-Morgenthaler, P., Zwahlen, M.C. and Hottinger, H. (1991) Lactose metabolism in Lactobacillus bulgaricus: Analysis of the primary structure and expression of the genes involved. J. of Bacteriol., 173(6), 1951–1957.

    CAS  Google Scholar 

  • Lerch, H.-P., Frank, R. and Collins, J. (1989) Cloning, sequencing and expression of the L-2-hydroxyisocaproate dehydrogenase-encoding gene of Lactobacillus confusus in Escherichia coli. Gene, 83, 263–270.

    PubMed  CAS  Google Scholar 

  • Lerch, H.P., Blocker, H., Kallwas, H., Hoppe, J., Tsai, H. and Collins, J. (1989b) Cloning, sequencing and expression in Escherichia coli of the d-2-hydroxyisocaproate dehydrogenase gene of Lactobacillus casei. Gene, 78, 47–57.

    PubMed  CAS  Google Scholar 

  • Lin, J., Schmitt, P. and Divies, C. (1991) Characterization of a citrate-negative mutant of Leuconostoc mesenteroides spp. mesenteroides: Metabolic and plasmidic properties. Appl. Microbiol. and Biotech., 34(5), 628–631.

    CAS  Google Scholar 

  • Lin, J.H.-C. and Savage, D. C. (1986) Genetic transformation of rifampicin resistance in Lactobacillus acidophilus. J. Gen. Microbiol. 132, 2107–2111.

    PubMed  CAS  Google Scholar 

  • Liu, M.L., Kondo, J.K., Barnes, M. B. and Bartholomeu, D.T. (1988) Plasmid-linked maltose utilization in Lactobacillus spp. Biochimie, 70, 351–355.

    PubMed  CAS  Google Scholar 

  • Lokman, B.C., van Santen, P., Verdoes, J.C., Kruse, J., Leer, J.R., Posno, M. and Pouwels, P.H. (1991) Organization and characterization of three genes involved in d-xylose catabolism in Lactobacillus pentosus. Mol. Gen. Genet., 230, 161–169.

    PubMed  CAS  Google Scholar 

  • Luchansky, J.B., Kleeman, E.G., Raya, R.R. and Klaenhammer, T.R. (1989) Genetic transfer systems for delivery of plasmid DNA, deoxyribonucleic acid, to Lactobacilus acidophilus ADH: Conjugation, electroporation, and transduction. J. of Dairy Sci., 72(6), 1408–1417.

    CAS  Google Scholar 

  • Luchansky, J.B., Muriana, P.M. and Klaenhammer, T.R. (1988) Application of electroporation for transfer of plasmid DNA to Lactobacillus, Lactococcus, Leuconostoc, Listeria, Pediococcus, Bacillus, Staphylococcus, Enterococcus and Propionibacterium. Mol. Microbiol., 2, 637–646.

    PubMed  CAS  Google Scholar 

  • Machuga, E.J. and Ives, D.H. (1984) Isolation and characterization of an aminopeptidase from Lactobacillus acidophilus R–26. Biochem. Biophys. Acta, 789, 26–36.

    PubMed  CAS  Google Scholar 

  • Macrina, F.L., Tobian, J.A., Jones, K.R., Evans, R.P. and Clewell, D.B. (1982) A cloning vector able to replicate in Escherichia coli and Streptococcus sanguis. Gene, 19, 345–353.

    PubMed  CAS  Google Scholar 

  • Martinez-Murcia, A.J. and Collins, M.D. (1990b) Nucleotide sequence of 16S ribosomal RNA from Lactobacillus kandleri and Lactobacillus minor. Nucl. Acid Res., 18, 3401.

    Google Scholar 

  • Martinez-Murcia, A.J. and Collins, M.D. (1990) Nucleotide sequence of 16S ribosomal RNA from Lactobacillus viridescens and Lactobacillus confusus. Nucl. Acid Res., 18, 3402.

    CAS  Google Scholar 

  • Mata, M. and Ritzenthaler, P. (1988) Present state of lactic acid bacteria phage taxonomy. Biochimie, 70, 395–400.

    PubMed  CAS  Google Scholar 

  • McKay, L.L. (1982) Regulation of lactose metabolism in dairy streptococci. In R. Davies Developments in Food Microbiology, Essex, Applied Science Publishers Ltd., pp. 153–182.

    Google Scholar 

  • McKay, L.L. (1983). Functional properties of plasmids in lactic streptococci. Antonie van Leeuwenhoek J. Microbiol., 49, 259–274.

    PubMed  CAS  Google Scholar 

  • McKay, L.L. and Baldwin, K. (1978) Stabilization of lactose metabolism in Streptococcus lactis C2. Appl. Environ. Microbiol., 36, 360–367.

    PubMed  CAS  Google Scholar 

  • McKay, L.L. and Baldwin, K.A. (1990) Applications for biotechnology: present and future improvements in lactic acid bacteria. FEMS Microbiol Rev., 87(1–2), 3–14.

    CAS  Google Scholar 

  • Mercenier, A. (1990) Molecular genetics of Streptococcus thermophilus. FEMS Microbiol. Rev., 87(1–2), 61–78.

    CAS  Google Scholar 

  • Mercenier, A. and Chassy, B.M. (1988) Strategies for the development of bacterial transformation systems. Biochimie, 70, 503–517.

    PubMed  CAS  Google Scholar 

  • Mercenier, A. and Lemoine, Y. (1989) Genetics of Streptococcus thermophilus: A review. J. Dairy Sci., 72, 3444–3454.

    Google Scholar 

  • Mercenier, A. Robert, C., Romero, D.A., Castellino, I., Slos, P. and Lemoine, Y. (1989) Development of an efficient spheroplast transformation procedure for Streptococcus thermophilus: the use of transfection to define a regeneration medium. Biochimie, 70, 567–577.

    Google Scholar 

  • Mercenier, A., Robert, C, Romero, D.A., Slos, P. and Lemoine, Y. (1987) In J.J. Ferretti & R.C. Curtiss (eds.), Streptococcal Genetics, Washington, D.C., ASM Publications, pp. 234–239.

    Google Scholar 

  • Mercenier, A., Slos, P., Faelen, M. and Lecocq, J.-P. (1988) Plasmid transduction in Streptococcus thermophilus. Molec. Gen. Genet., 212, 386–389.

    PubMed  CAS  Google Scholar 

  • Meyer, J. and Jordi, R. (1987) Purification and characterization of X-prolyl-dipeptidyl-aminopeptidase from Lactobacillus lactis and from Streptococcus thermophilus. J. Dairy Sci., 70, 738–745.

    PubMed  CAS  Google Scholar 

  • Mills, O.E. and Thomas, T.D. (1981). Nitrogen sources for growth of lactic streptococci in milk. N.Z.J. Dairy Sci. Technol., 15, 43–55.

    Google Scholar 

  • Mollet, B. and Delley, M. (1990) Spontaneous deletion formation within the β-galactosidase gene of Lactobacillus bulgaricus. J. Bacteriol., 172, 5670–5676.

    PubMed  CAS  Google Scholar 

  • Mollet, B. and Delley, M. (1991) A β-galactosidase deletion mutant of Lactobacillus bulgaricus reverts to generate an active enzyme by internal DNA sequence duplication. Molec. Gen. Genet., 227(1), 17–21.

    PubMed  CAS  Google Scholar 

  • Mollet, B., Knol, J., Poolman, B., Marciset, O. and Delley, M. (1993) Directed genomic integration, gene replacement and integrative gene expression in Streptococcus thermophilus. J. Bacteriol., 175, 4315–4324.

    PubMed  CAS  Google Scholar 

  • Moran Jr., C.P., Lang, N., LeGrice, S.F.J., Lee, G., Stephens, M., Soneshein, A.L., Pero, J. and Losick, R. (1982) Nucleotide sequences that signal the initiation of transcription and translation in Bacillus subtilis. Mol. Gen. Genet., 186, 339–346.

    PubMed  CAS  Google Scholar 

  • Morelli, L., Cocconcelli, P.S., Bottazzi, V., Damiani, G., Ferretti, L. and Sgaramella, V. (1987). Lactobacillus protoplast transformation. Plasmid, 17, 73–79.

    PubMed  CAS  Google Scholar 

  • Morelli, L., Vescovo, M. and Bottazzi, V. (1983) Identification of chloramphenicol resistance plasmids in Lactobacillus reuteri and Lactobacillus acidophilus. Int. J. Microbiol., 1, 1–5.

    Google Scholar 

  • Morse, M.L., Hill, K.L., Egan, J.B. and Hengstenberg, W. (1968) Metabolism of lactose by Staphylococcus aureus and its genetic basis. J. Bacteriol., 95, 2270–2274.

    PubMed  CAS  Google Scholar 

  • Mortvedt, C.I. and Nes, I.F. (1990) Plasmid-associated bacteriocin production by a Lactobacillus sake strain. J. of Gen. Microbiol., 136(8), 1601–1608.

    Google Scholar 

  • Muriana, P. and Klaenhammer, T.R. (1987) Conjugal transfer of plasmid-encoded determinants for bacteriocin production and immunity in Lactobacillus acidophilus 88. Appl. Environ. Microbiol., 53., 553–560.

    PubMed  CAS  Google Scholar 

  • Muriana, P.M. and Klaenhammer, T.R. (1991) Cloning, phenotypic expression, and DNA sequence of the gene for Lactocin F, an antimicrobial peptide produced by Lactobacillus spp. J. Bacteriol., 173(5), 1779–1788.

    PubMed  CAS  Google Scholar 

  • Naes, H. and Nissen-Meyer, J. (1992) Purification and amino-terminal amino acid sequence determination of the cell-wall-bound proteinase from Lactobacillus paracasei spp. paracasei. J. Gen. Microbiol., 138, 313–318.

    PubMed  CAS  Google Scholar 

  • Nakamura, L.K. (1981) Lactobacillus amylovorus, a new starch-hydrolyzing species from cattle waste-corn fermentations. Int. J. Syst. Bacteriol., 31(1), 56–63.

    CAS  Google Scholar 

  • Nakamura, L.K. and Crowell, C.D. (1979) Lactobacillus amylophilus, a new starch-hydrolyzing species from swine waste-corn fermentation. Dev. Indust. Microbiol., 20, 531–540.

    Google Scholar 

  • Natori, Y., Kano, Y. and Imamoto, F. (1990) Nucleotide sequences and genomic constitution of five tryptophan genes of Lactobacillus casei. J. Biochem. (Tokyo), 107(2), 248–255.

    CAS  Google Scholar 

  • Nel, L., Wingfield, D., Van der Meer, L.J. and Van Vuuren, H.J.J. (1987) Isolation and characterization of Leuconostoc oenos bacteriophages from wine and sugarcane. FEMS Micro. Lett., 44, 63–67.

    Google Scholar 

  • Neve, H., Krush, U. and Teuber, M. (1990) Virulent and temperate bacteriophages of thermophilic lactic acid streptococci. FEMS Microbiol., 87, P58.

    Google Scholar 

  • O’Sullivan, T. and Daly, C. (1982) Plasmid DNA in Leuconostoc species. Irish J. Food Sci. Technol., 6, 206.

    Google Scholar 

  • Oppenheim, D.S. and Yanofsky, C. (1980) Transitional coupling during expression of the tryptophan operon of Escherichia coli. Genetics., 5, 785–795.

    Google Scholar 

  • Orberg, P.K. and Sandine, W.E. (1984). Common occurrence of plasmid DNA and vancomycin resistance in Leuconostoc spp. Appl. Environ. Microbiol., 48, 1129–1133.

    PubMed  CAS  Google Scholar 

  • Oskouian, B. and Stewart, G.C. (1990) Expression and catabolite repression of the lactose operon of Staphylococcus aureus., J. Bacteriol., 172, 3804–3812.

    PubMed  CAS  Google Scholar 

  • Park, S.F. and Stewart, G.S.A.B. (1990) High efficiency transformation of Listeria monocytogenes by electroporation of penicillin-treated cells. Gene, 94, 129–132.

    PubMed  CAS  Google Scholar 

  • Platt, T. (1986) Transcription termination and the regulation of gene expression. Ann. Rev. Biochem., 55, 339–372.

    PubMed  CAS  Google Scholar 

  • Poolman, B., Royer, T.J., Mainzer, S.E. and Schmidt, B.F. (1989) Lactose transport system of Streptococcus thermophilus: A hybrid protein with homology to the melibiose carrier and enzyme III of phosphoenolpyruvate-dependent phosphotransferase systems. J. Bacteriol., 171(1), 244–253.

    PubMed  CAS  Google Scholar 

  • Poolman, B., Royer, T.J., Mainzer, S.E. and Schmidt, B.F. (1990) Carbohydrate utilization in Streptococcus thermophilus: characterization of the genes for aldolase-1-epimerase (mutarotase) and UDP-glucose 4-epimerase. J. Bacteriol., 172, 4037–4047.

    PubMed  CAS  Google Scholar 

  • Porter, E.V. and Chassy, B.M. (1988) Nucleotide sequence of the β-d-phospho-galactoside galactohydrolase gene of Lactobacillus casei: comparison to analogous pbg genes of other Gram-positive organisms. Gene, 62, 263–276.

    PubMed  CAS  Google Scholar 

  • Posno, M., Heuvelmans, P.T.H.M., Van Giezen, M.J.F., Lokman, B.C., Leer, R.J. and Pouwels, P.H. (1991) Complementation of the inability of Lactobacillus strains to utilize d-xylose with d-xylose catabolism-encoding genes of Lactobacillus pentosus. Appl. Environ. Microbiol., 57, 2764–2766.

    PubMed  CAS  Google Scholar 

  • Posno, M., Leer, R.J., VanLuijk, N., VanGeizen, M.J.F. and Heuvelmans, P.T.H.M. (1991b). Incompatibility of Lactobacillus vectors with replicons derived from small cryptic Lactobacillus plasmids and segregational instability of the introduced vectors. Appl. Environ. Microbiol., 57(6), 1822–1828.

    Google Scholar 

  • Pouwels, P.H., Leer, R.J. and Posno, M. (1992) Genetic modification of Lactobacillus: A new approach toward strain improvement. In Actes du Colloque Lactic 91, pp. 133–148.

    Google Scholar 

  • Pouwels, P.H., Vanluijk, N., Leer, R.J. and Posno, M. (1993) Control of replication of the Lactobacillus pentosus plasmid p353–2: Evidence for a mechanism involving transcriptions attenuation of the gene coding for the replication protein. Molec. Gen. Genet., in press.

    Google Scholar 

  • Powell, L.B., Achen, M.G., Hillier, A.J. and Davidson, B.E. (1988) A simple and rapid method for genetic transformation of lactic streptococci by electroporation. Appl. Environ. Microbiol., 54, 655–660.

    PubMed  CAS  Google Scholar 

  • Pucci, M.J., Monteschio, M.E. and Kemker, C.L. (1988) Intergeneric and intrageneric conjugal transfer of plasmid-encoded antibiotic resistance determinants in Leuconostoc spp. Appl. Environ. Microbiol., 54, 281–287.

    PubMed  CAS  Google Scholar 

  • Raya, R.R., Fremaux, C., de Antoni, G.L. and Klaenhammer, T.R. (1992) Site-specific integration of the temperate bacteriophage ϕADH into the Lactobacillus gasseri chromosome and molecular characterization of the phage attP and bacterial attB attachment sites. J. Bacteriol., 174, 5584–5592.

    PubMed  CAS  Google Scholar 

  • Raya, R.R. and Klaenhammer, T.R. (1992) High-frequency plasmid transduction by Lactobacillus gasseri bacteriophage PHI-ADH. Appl. Environ. Microbiol., 58, 187–193.

    PubMed  CAS  Google Scholar 

  • Raya, R.R., Kleeman, E.G., Luchansky, J.B. and Klaenhammer, T.R. (1989) Characterization of the temperate bacteriphage ϕADH and plasmid transduction in Lactobacillus acidophilus ADH. Appl. Environ. Microbiol., 55(9), 2206–2213.

    PubMed  CAS  Google Scholar 

  • Redondo-Lopez, V. (1990) Emerging role of lactobacilli in the control and maintenance of vaginal bacterial microflora. Rev. Infec. Dis., 12, 856–872.

    CAS  Google Scholar 

  • Reid, G., Bruce, A., McGroarty, J.A., Cheng, K.-J. and Costerton, J.W. (1990). Is there a role for lactobacilli in prevention of urogenital and intestinal infections? Clin. Microbiol. Rev., 3, 335–344.

    PubMed  CAS  Google Scholar 

  • Reizer, J., Reizer, A. and Saier, M.H. (1990) The cellobiose permease of Escherichia coli consists of three proteins and is homologous to the lactose permease of Staphylococcus aureus. Res. in Microbiol., 141, 1061–1067.

    CAS  Google Scholar 

  • Rinckel, L.A. and Savage, D.C. (1990) Characterization of plasmids and plasmid-borne macrolide resistance from Lactobacilus sp. strain 100–33. Plasmid, 23, 119–125.

    PubMed  CAS  Google Scholar 

  • Rixon, J.E. Hazlewood, G.P. and Gilbert, H.J. (1990) Integration of an unstable plasmid into the chromosome of Lactobacillus plantarum. FEMS Microbiol. Lett., 71(1–2), 105–110.

    CAS  Google Scholar 

  • Romero, D.A., Slos, P., Robert, C., Castellino, I. and Mercenier, A. (1987). Conjugative mobilization as an alternative vector delivery system for lactic streptococci. Appl. Environ. Microbiol., 53, 2405–2413.

    PubMed  CAS  Google Scholar 

  • Roussel, Y., Colmin, C., Simonet, J.M. and Decaris, B. (1993) Strain characterization, genome size and plasmid content in the Lactobacillus acidophilus group (Hansen and Marquot). J. Appl. Bacteriol., 74, 549–556.

    PubMed  CAS  Google Scholar 

  • Rygus, T. and Hillen, W. (1992) Catabolite repression of the xyl operon of Bacillus megaterium. J. Bacteriol., 174, 3049–3055.

    PubMed  CAS  Google Scholar 

  • Sanders, M.E. (1988) Phage resistance in lactic acid bacteria. Biochimie, 70, 411–422.

    PubMed  CAS  Google Scholar 

  • Sarra, et al. (1989) Antagonism and adhesion among isogenic strains of Lactobacillus reuteri in the caecum of gnotobiotic mice. Microbiologica, 12, 69–74.

    PubMed  CAS  Google Scholar 

  • Scheirlinck, T., Mahillon, J., Joos, H., Dhaese, P. and Michiels, F. (1989) Integration and expression of a-amylase and endoglucanase genes in the Lactobacillus plantarum chromosome. Appl. and Environ. Microbiol., 55(9), 2130–2137.

    CAS  Google Scholar 

  • Scheler, A., Rygus, T., Allmansberger, R. and Hillen, W. (1991) Molecular cloning, structure, promoters, and regulatory elements for transcription of the Bacillus licheniformis encoded regulon for xylose utilization. Arch. Microbiol., 155, 526–534.

    PubMed  CAS  Google Scholar 

  • Schillinger, U. and Lücke, F.K. (1989) Antimicrobial activity of Lactobacillus sake isolated from meat. Appl. Environ. Microbiol., 55, 1901–1906.

    PubMed  CAS  Google Scholar 

  • Schleifer, K.H. (1987) Recent changes in the taxonomy of lactic acid bacteria. FEMS Microbiol. Rev., 46, 201–203.

    Google Scholar 

  • Schleifer, K.H., Ludwig, W., Amman, R., Heitel, C., Ehrmann, M., Köhler, W. and Krause, A. (1992) Phylogenetic relationships of lactic acid bacteria and their identification with nucleic acid probes. In Lactic 91, Caen: Centre de Publications de l’Universite de Caen, pp. 23–32.

    Google Scholar 

  • Schleifer, K.L., Ehrmann, M., Krush, U. and Neve, H. (1991) Revival of the Species of Streptococcus thermophilus (ex Orla-Jensen, 1919). Syst. Appl. Microbiol., 14, 386–388.

    Google Scholar 

  • Schmidt, B.F., Adams, R.M., Requadt, C., Power, S. and Mainzer, S.E. (1989) Expression and nucleotide sequence of the Lactobacillus bulgaricus β-galactosidase gene cloned in Escherichia coli. J. Bacteriol., 171(2), 625–635.

    PubMed  CAS  Google Scholar 

  • Schroeder, C.J., Robert, C., Lenzen, G., McKay, L.L. and Mercenier, A. (1991) Analysis of the lacZ sequences from 2 Streptococcus thermophilus strains — comparison with the Escherichia coli and Lactobacillus bulgaricus β-galactosidase sequences. J. Gen. Microbiol., 137, 369–380.

    PubMed  CAS  Google Scholar 

  • Sechaud, L. (1990) Caractérisation de 35 bactériophages de Lactobacillus helveticus. Doctoral Dissertation, INRA, Jouy en Joses, France.

    Google Scholar 

  • Sechaud, L., Cluzel, J.-P., Rousseau, M., Baumgartner, A. and Accolas, J.-P. (1988) Bacteriophages of lactobacilli. Biochimie, 70, 401–410.

    PubMed  CAS  Google Scholar 

  • Shahbal, S., Hemme, D. and Desmazeaud, J. (1991) High cell wall-associated proteinase activity of some Streptococcus thermophilus strains (H-strains) correlated with a high acidification rate in milk. Le Lait, 71, 351–357.

    CAS  Google Scholar 

  • Shahbal, S., Hemme, D. and Renault, P. (1993) Characterization of a cell envelope-associated proteinase activity of Streptococcus thermophilus H-strains. Appl. Environ. Microbiol., 59, 177–182.

    PubMed  CAS  Google Scholar 

  • Shankar, P.A. and Davies, F.L. (1977) Amino acid peptide utilization by Streptococcus thermophilus in relation to yogurt manufacture. J. Appl. Bacteriol., 43, 8–13.

    Google Scholar 

  • Shay, B.J., Egan, A., Wright, M. and Rogers, P. (1988) Cysteine metabolism in an isolate of Lactobacillus sake: plasmid composition and cysteine transport. FEMS Microbiol. Lett., 56, 183–188.

    CAS  Google Scholar 

  • Sherman, J.M. (1937) The streptococci. Bacteriol. Rev., 1, 3–97.

    PubMed  CAS  Google Scholar 

  • Shimizu-Kadota, M. (1987) Properties of lactose plasmid pLY101 in Lactobacillus casei. Appl. Environ. Microbiol., 53, 2987–2991.

    PubMed  CAS  Google Scholar 

  • Shimizu-Kadota, M., Flickinger, J.L. and Chassy, B.M. (1988) Evidence that Lactobacillus casei insertion element ISLI has a narrow host range. J. Bacteriol., 170(10), 4976–4978.

    PubMed  CAS  Google Scholar 

  • Shimizu-Kadota, M., Kiwaki, M., Hirokawa, H. and Tsuchida, N. (1985) ISL1: a new transposable element in Lactobacillus casei. Mol. Gen. Genet., 200, 193–198.

    PubMed  CAS  Google Scholar 

  • Shimizu-Kadota, M. and Kudo, S. (1984) Liposome-mediated transfection of Lactobacillus case spheroplasts. Agric. Biol. Chem., 48, 1105–1107.

    CAS  Google Scholar 

  • Shimizu-Kadota, M., Shibahara-Sone, H. and Ishiwa, H. (1991) Shuttle plasmid vectors for Lactobacillus casei and Escherichia coli with a minus origin. Appl. Environ. Microbiol., 57, 3292–3300.

    PubMed  CAS  Google Scholar 

  • Shine, J. and Dalgarno, L. (1974) The 3′-terminal sequence of Escherichia coli 16S RNA: complementarity to non-sense triplets and ribosome binding sites. Proc. Natl. Acad. Sci USA, 71, 5463–5467.

    Google Scholar 

  • Shrago, A.W., Chassy, B.M. and Dobrogosz, W.J. (1986) Conjugal plasmid transfer (pAMβl) in Lactobacillus plantarum. Appl Environ. Microbiol., 52, 574–576.

    PubMed  CAS  Google Scholar 

  • Shrago, A.W. and Dobrogosz, W.J. (1988) Conjugal transfer of group B streptococcal plasmids and comobilization of Escherichia coli-Streptococcus shuttle plasmids to Lactobacillus plantarum. Appl. Environ. Microbiol., 54, 824–826.

    PubMed  CAS  Google Scholar 

  • Sibakov, M., Koivula, T., Von Wright, A. and Palva, I. (1991) Secretion of TEM β-lactamase with signal sequences isolated form the chromosome of Lactococcus lactis spp. lactis. Appl. and Environ. Microbiol., 57(2), 341–348.

    CAS  Google Scholar 

  • Simon, D. and Chopin, A. (1988) Construction of a vector plasmid family and its use for molecular cloning in Streptococcus lactis. Biochimie. 70, 559–566.

    PubMed  CAS  Google Scholar 

  • Skaugen, M. (1989) The complete nucleotide sequence of a small cryptic plasmid from Lactobacillus plantarum. Plasmid., 22, 175–179.

    PubMed  CAS  Google Scholar 

  • Slos, P., Bourquin, J.C., Lemoine, Y. and Mercenier, A. (1991) Isolation and characterization of chromosomal promoters of Streptococcus salivarius spp. thermophilus. Appl. Environ. Microbiol., 57(5), 1333–1339.

    PubMed  CAS  Google Scholar 

  • Smiley, M.B. and Fryder, V. (1978) Plasmids, lactic acid production, and N-acetyl-d-glucosamine fermentation in Lactobacillus helveticus Subsp. jugurti. Appl. Environ. Microbiol., 35, 777–781.

    PubMed  CAS  Google Scholar 

  • Smith, M.D. and Clewell, D.B. (1984) Return of Streptococcus faecalis DNA cloned in Escherichia coli to its original host via transformation of Streptococcus sanguis followed by conjugative mobilization. J. Bacteriol., 160, 1109–1114.

    PubMed  CAS  Google Scholar 

  • Solaiman, D.K.Y., and Somkuti, G.A. (1990) Isolation and characterization of a type II restriction endonuclease from Streptococcus thermophilus. FEMS Micro. Lett., 67, 261–266.

    CAS  Google Scholar 

  • Solaiman, D.K.Y., and Somkuti, G.A. (1991) A type-II restriction endonuclease of Streptococcus thermophilus. FEMS Microbiol Lett., 80(1), 75–80.

    CAS  Google Scholar 

  • Solaiman, D.K.Y., and Somkuti, G.A. (1992). DNA structures contributing to the instability of recombinant plasmids in Streptococcus thermophilus. Biotechnol. Lett., 14, 753–758.

    CAS  Google Scholar 

  • Somkuti, G.A., Solaiman, D.K.Y, and Steinberg, D.H. (1992) Expression of Streptomyces sp. cholesterol oxidase in Lactobacillus casei. Appl. Microbiol. Biotechnol., 37, 330–334.

    CAS  Google Scholar 

  • Somkuti, G.A. and Steinberg, D.H. (1988) Genetic transformation of Streptococcus thermophilus by electroporation. Biochimie, 70, 503–517.

    Google Scholar 

  • Somkuti, G.A. and Steinberg, D.H. (1991) DNA-DNA hybridization analysis of Streptococcus thermophilus plasmids. FEMS Microbiol. Lett., 78, 271–276.

    CAS  Google Scholar 

  • Sozzi, T., Maret, R. and Poulin, J.M. (1976). Mise en évidence de bactériophage dans le vin. Experientia, 32, 568–569.

    PubMed  CAS  Google Scholar 

  • Stackebrandt, E., Fowler, V.J. and Woese, CR. (1983) A phylogenetic analysis of lactobacilli, Pediococcus pentosaceus and Leuconostoc mesenteroides. Syst. Appl. Microbiol., 4, 326–337.

    PubMed  CAS  Google Scholar 

  • Stackenbrandt, E. and Teuber, M. (1988) Molecular taxonomy and phylogenetic position of lactic acid bacteria. Biochimie, 70, 317–324.

    Google Scholar 

  • Swenson, J.M., Facklam, R.R. and Thornsberry, C (1990) Antimicrobial susceptibility of vancomycin-resistant Leuconostoc, Pediococcus and Lactobacillus species. Antimicrobial Agents and Chemotherapy, 34(4), 543–549.

    PubMed  CAS  Google Scholar 

  • Takiguchi, R., Hashiba, H., Aoyama, K. and Ishii, S. (1989) Complete nucleotide sequence and characterization of a cryptic plasmid from Lactobacillus helveticus spp. jugurti. Appl. Environ. Microbiol., 55(6), 1653–1655.

    PubMed  CAS  Google Scholar 

  • Tannock, G.W. (1987) Conjugal transfer of plasmid pAMβl in Lactobacillus reuteri and between lactobacilli and Enterococcus faecalis. Appl. Environ. Microbiol, 53, 2693–2695.

    PubMed  CAS  Google Scholar 

  • Thomas, T.D. and Pritchard, G.G. (1987). Proteolytic enzymes of dairy starter cultures. FEMS Microbiol Rev., 46, 245–268.

    CAS  Google Scholar 

  • Thompson, J. (1987) Regulation of sugar transport and metabolism in lactic acid bacteria. FEMS Microbiol. Rev., 46, 221–231.

    CAS  Google Scholar 

  • Thompson, J.K. and Collins, M.A. (1989) Evidence for the conjugal transfer of a plasmid pVA797::pSA3 co-integrate into strains of Lactobacillus helveticus. Lett. Appl. Microbiol., 9(2), 61–64.

    Google Scholar 

  • Thompson, K. and Collins, M. (1991) Molecular cloning in Lactobacillus helveticus by plasmid pSA3::pVA797 co-integrate formation and conjugal transfer. Appl. Microbiol. and Biotech., 35(3), 334–338.

    CAS  Google Scholar 

  • Tohyama, J.B., Sakurai, T. and Arai, H. (1971) Transduction by temperate phage PLS-1 in Lactobacillus salivarius. Jpn. J. Bacteriol., 26, 482–489.

    Google Scholar 

  • Toy, J. and Bognar, A.L. (1990) Cloning and expression of the gene encoding Lactobacillus casei Folylpoly-γ-glutamate synthetase in Escherichia coli and determination of its primary structure. J. Biol. Chem., 265(5), 2492–2499.

    PubMed  CAS  Google Scholar 

  • Trevors, J.T., Chassy, B.M., Dower, W.J. and Blaschek, H.P. (1992) Electrotransformation of bacteria by plasmid DNA. In D.C. Chang, B.M. Chassy, J.A. Saunders, & A.E. Sowers (eds), Guide to Electroporation and Electrofusion San Diego, Academic Press, pp. 265–290.

    Google Scholar 

  • Tsai, H.J. and Sandine, W.E. (1987) Conjugal transfer of lactose-fermenting ability from Streptococcus lactis C2 to Leuconostoc cremoris CAF7 yields leuconostoc that ferment lactose and produce diacetyl. J. Indust. Microbiol., 2, 25–33.

    Google Scholar 

  • Tsai, H.J. and Sandine, W.E. (1987b) Conjugal transfer of nisin plasmid genes from Streptococcus lactis 7962 to Leuconostoc dextranicum 181. Appl. Environ. Microbiol., 53, 352–357.

    PubMed  CAS  Google Scholar 

  • Van der Lelie, D., Van der Vossen, J.M.B.M. and Venema, G. (1988) Effect of plasmid incompatibility on DNA transfer to Streptococcus cremoris. Appl. Environ. Microbiol, 54., 865–871.

    PubMed  Google Scholar 

  • Van Rooijen, R.J. and de Vos, W.M. (1991) Molecular cloning, transcriptional analysis, and nucleotide sequence of lacR, a gene encoding the repressor of the lactose phosphotransferase system of Lactococcus lactis. J. of Biol. Chem., 265(30), 18499–18503.

    Google Scholar 

  • Van Rooijen, R.J., Van Schalkwijk, S. and de Vos, W.M. (1991) Molecular cloning, characterization, and nucleotide sequence of the tagatose-6-phosphate pathway gene cluster of the lactose operon of Lactococcus lactis. J. Biol. Chem., 266(11), 7176–7181.

    PubMed  Google Scholar 

  • Vanderslice, P., Copeland, W. and Robertus, J. (1986) Cloning and nucleotide sequence of wild type and a mutant histidine decarboxylase from Lactobacillus 30a. J. Biol. Chem., 261, 15186–15191.

    PubMed  CAS  Google Scholar 

  • Vescovo, M., Morelli, L. and Bottazzi, V. (1982) Drug resistance plasmids in Lactobacillus acidophilus and Lactobacillus reuteri. Appl. Environ. Microbiol., 43, 50–56.

    PubMed  CAS  Google Scholar 

  • Vescovo, M., Morelli, L., Bottazzi, V. and Gasson, M.J. (1983) Conjugal transfer of broad-host-range plasmid pAMβl into enteric species of lactic acid bacteria. Appl. Environ. Microbiol., 46, 753–755.

    PubMed  CAS  Google Scholar 

  • Vidgrén, G., Palva, I., Pakkanen, R., Lounatmaa, K. and Palva, A. (1992) S-layer of Lactobacillus brevis: PCR cloning and determination of the nucleotide sequence. J. Bacteriol., 174, 7419–7427.

    PubMed  Google Scholar 

  • Vogel, R.F., Gaier, W. and Hammes, W.P. (1990) Expression of the lipase gene from Staphylococcus hyicus in Lactobacilus curvatus Lc2-c FEMS Microbiol. Lett., 69, 289–292.

    CAS  Google Scholar 

  • Vujcic, M. and Topisirovic, L. (1993) Molecular analysis of the Rolling-Circle replicating plasmid pA1 of Lactobacillus plantarum A112. Appl. Environ. Microbiol., 59, 274–280.

    PubMed  CAS  Google Scholar 

  • Weickert, M.J. and Chambliss, G.H. (1990) Site-directed mutagenesis of a catabolite repression operator sequence in Bacillus subtilis. Proc. Natl. Acad. Sci. USA, 87, 6238–6242.

    PubMed  CAS  Google Scholar 

  • Weisburg, W.G., Tully, J.G., Rose, D.L., Petzel, J.P., Oyaizu, H., Yang, D., Mandelco, L., Sechrest, J., Lawrence, T.G., Van Etten, J., Maniloff, J. and Woese, CR. (1989) A phylogenetic classification of the mycoplasmas: Basis for their classification. J. Bacteriol., 171, 6455–6467.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mercenier, A., Pouwels, P.H., Chassy, B.M. (1994). Genetic engineering of lactobacilli, leuconostocs and Streptococcus thermophilus . In: Gasson, M.J., De Vos, W.M. (eds) Genetics and Biotechnology of Lactic Acid Bacteria. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1340-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1340-3_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4584-1

  • Online ISBN: 978-94-011-1340-3

  • eBook Packages: Springer Book Archive