Skip to main content

Gene transfer systems and transposition

  • Chapter

Abstract

The lactic acid bacteria have evolved and been selected for exploitation in a variety of food fermentation processes. The strains currently available have been subject to gene introduction and genetic reorganization by a variety of natural mechanisms. The study of these mechanisms of gene transfer and DNA rearrangement has led to the development of genetic techniques that can be exploited for strain improvement. These systems complement the genetic engineering methods that are described in chapter 2. This chapter covers the characterization and exploitation of conjugation, transduction and transformation in lactic acid bacteria and the exploitation of generalized recombination and chromosomal integration. The lactic acid bacteria harbour a large number of transposable genetic elements and these undoubtedly contribute to the genetic instability that appears characteristic of many strains. The characterization of the known IS elements and the nisin transposon are described as well as the exploitation of heterologous transposons for genetic analysis. The recent development of pulsed field gel electrophoresis for analysis of whole chromosomes together with some elegant genetic strategies has led to progress in physical and genetic mapping of lactococcal genomes which is also reviewed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahn, C., Collins-Thompson, D., Duncan, C and Stiles, M.E. (1992) Mobilization and location of the genetic determinant of chloramphenicol resistance from Lactobacillus plantarum ca TC2R. Plasmid 27, 169–176.

    PubMed  CAS  Google Scholar 

  • Allen, L.K., Sandine, W.E. and Elliker, P.R. (1963) Transduction in Streptococcus lactis. J. Dairy Res. 30, 351–357.

    CAS  Google Scholar 

  • Anderson, D.G. and McKay, L.L. (1983) Isolation of a recombination-deficient mutant of Streptococcus lactis ML3. J. Bacteriol. 155, 930–932.

    PubMed  CAS  Google Scholar 

  • Anderson, D.G. and McKay, L.L. (1984) Genetic and physical characterization of recombinant plasmids associated with cell aggregation and high frequency conjugal transfer in Streptococcus lactis ML3. J. Bacteriol. 156, 954–962.

    Google Scholar 

  • Anderson, P.H. and Gasson, M.J. (1985) High copy number plasmid vectors for use in lactic streptococci. FEMS Microbiol. Lett. 30, 193–196.

    Google Scholar 

  • Arber, W. (1960) Transduction of chromosomal genes and episomes in Escherichia coli. Virology 11, 273–288.

    PubMed  CAS  Google Scholar 

  • Aukrust, T. and Nes, I.F. (1988) Transformation of Lactobacillus plantarum with the plasmid pTVl by electroporation. FEMS Microbiol. Lett. 52, 127–132.

    CAS  Google Scholar 

  • Badii, R., Jones, S. and Warner, P.J. (1989) Spheroplast and electroporation-mediated transformation of Lactobacillus plantarum. Lett. Appl. Microbiol. 9, 41–44.

    Google Scholar 

  • Baumgartner, A., Murphy, M., Daly, C. and Fitzgerald, G.F. (1986) Conjugative co-transfer of lactose and bacteriophage resistance plasmids from Streptococcus cremoris UC653. FEMS Microbiol. Lett. 35, 233–237.

    CAS  Google Scholar 

  • Beresford, T.P.J. (1991) A physiological and genetic study of ribosomal RNA synthesis in Lactococcus lactis subsp. lactis. PhD Thesis, National University of Ireland, University College, Cork.

    Google Scholar 

  • Boizet, B., Flickinger, J.L. and Chassy, B.M. (1988) Transfection of Lactobacillus bulgaricus protoplasts by bacteriophage DNA. Appl. Environ. Microbiol. 54, 3014–3018.

    PubMed  CAS  Google Scholar 

  • Bringel, F., van Ustine, G.L. and Scott, J.R. (1991) A host factor absent from Lactococcus lactis subsp. lactis MG1363 is required for conjugative transposition Molec. Microbiol. 5, 2983–2993.

    CAS  Google Scholar 

  • Bringel, F., van Alstine, G.L. and Scott, J.R. (1992) Transfer of Tn976 between Lactococcus lactis subsp. lactis strains is nontranspositional: evidence for a chromosomal fertility function in strain MG1363. J. Bacteriol. 174, 5840–5847.

    PubMed  CAS  Google Scholar 

  • Broadbent, J.R. and Kondo, J.K. (1991) Genetic construction of nisin-producing Lactococcus lactis subsp. cremoris and analysis of a rapid method for conjugation. Appl. Environ. Microbiol. 57, 517–524.

    PubMed  CAS  Google Scholar 

  • Camilli, A., Portnoy, D.A. and Youngman, P. (1990) Insertional mutagenesis of Listeria monocytogenes with a novel Tn977 derivative that allows direct cloning of DNA flanking transposon insertions. J. Bacteriol. 172, 3738–3744.

    PubMed  CAS  Google Scholar 

  • Canard, B. and Cole, S.J. (1989) Genome organisation of the anaerobic pathogen Clostridium perfringens. Proc. Natl. Acad. Sci. U.S.A. 86, 6676–6680.

    PubMed  CAS  Google Scholar 

  • Casey, J., Daly, C. and Fitzgerald, G.F. (1992) Controlled integration into the Lactococcus chromosome of the pCI829-encoded abortive infection gene from Lactococcus lactis subsp. lactis UC811. Appl. Environ, Microbiol. 58, 3283–3291.

    CAS  Google Scholar 

  • Chang, S. and Cohen, S.N. (1979) High frequency transformation of Bacillus subtilis protoplasts by Plasmid DNA. Mol. Gen. Genet. 168, 111–115.

    PubMed  CAS  Google Scholar 

  • Chassy, B.M. and Rokaw. E. (1981) Conjugal transfer of plasmid-associated lactose metabolism in Lactobacillus casei subsp. casei. in: Molecular Biology, Pathogenesis and Ecology of Bacterial Plasmids, eds. Levy, S., Clowes, R. and Koenig, E., Plenum Press, New York, p 590.

    Google Scholar 

  • Chassy, B.M. (1987) Prospects for the genetic manipulation of lactobacilli. FEMS Microbiol. Rev. 46, 279–312.

    Google Scholar 

  • Chassy, B.M. and Flickinger, J.L. (1987) Transformation of Lactobacillus casei by electroporation. FEMS Microbiol. Lett 44, 173–177.

    CAS  Google Scholar 

  • Chassy, B.M., Mercenier, A. and Flickinger, J. (1988) Transformation of bacteria by electroporation. TIBTECH 6, 303–309.

    CAS  Google Scholar 

  • Chopin, M.-C., Chopin, A., Rouault, A. and Galleron, N. (1989) Insertion and amplification of foreign genes in the Lactococcus lactis subsp. lactis chromosome. Appl. Environ. Microbiol., 55, 1769–1774.

    PubMed  CAS  Google Scholar 

  • Cluzel, P-J., Chopin, A., Ehrlich, S.D. and Chopin, M.-C. (1991) Phage abortive infection mechanism from Lactococcus lactis subsp. lactis, expression of which is mediated by an iso-ISSI element. Appl. Environ. Microbiol. 57, 3547–3551.

    PubMed  CAS  Google Scholar 

  • Cocconcelli, P.S., Morelli, L., Vescovo, M. and Bottazzi, V. (1986) Intergeneric protoplast fusion in lactic acid bacteria. FEMS Microbiol. Lett. 35, 211–214.

    CAS  Google Scholar 

  • Connell, H., Lemmon, J. and Tannock, G.W. (1988) Formation and regeneration of protoplasts and spheroplasts of gastrointestinal strains of lactobacilli. Appl. Environ. Microbiol. 54, 1615–1618.

    PubMed  CAS  Google Scholar 

  • Cosby, M.W., Axelsson, L.T. and Dobrogosz, W.J. (1989) Tn977 transposition in Lactobacillus plantarum using the highly temperature-sensitive plasmid pTVITs as a vector. Plasmid 22, 236–243.

    PubMed  CAS  Google Scholar 

  • Cosby, W.M., Casas, I.A. and Dobrogosz, W.J. (1988) Formation, regeneration, and transfection of Lactobacillus plantarum protoplasts. Appl. Environ. Microbiol. 54, 2599–2602.

    PubMed  CAS  Google Scholar 

  • David, S., Simons, G. and De Vos, W.M. (1989) Plasmid transformation by electroporation of Leuconostoc paramesenteroides and its use in molecular cloning. Appl. Environ. Microbiol. 55, 1483–1489.

    PubMed  CAS  Google Scholar 

  • Davidson, B.E., Powell, I.B. and Hillier, A.J. (1990) Temperate bacteriophages and lysogeny in lactic acid bacteria. FEMS Microbiol. Rev. 87, 79–90.

    CAS  Google Scholar 

  • Davies, F.L. and Gasson, M.J. (1981) Reviews of the progress of dairy science: Genetics of lactic acid bacteria. J. Dairy Res. 48, 363–367.

    PubMed  CAS  Google Scholar 

  • De Mann, J.C., Rogosa, M. and Sharpe, M.E. (1960) A medium for the cultivation of lactobacilli. J. Appl. Bacteriol, 23, 130–135.

    Google Scholar 

  • De Vos, W.M. and Davies, F.L. (1984) Plasmid DNA in lactic streptococci: bacteriophage resistance and proteinase plasmids in Streptococcus cremoris SK11. In Third European Congress on Biotechnology, Verlag Chemie, Weisheim 3 201–205.

    Google Scholar 

  • De Vos, W.M. (1987) Gene cloning and expression in lactic streptococci. FEMS Microbiol. Rev. 46, 281–295.

    Google Scholar 

  • Dodd, H.M., Horn, N. and Gasson, M.J. (1990) Analysis of the genetic determinant for production of the peptide antibiotic nisin. J. Gen. Microbiol. 136, 555–560.

    PubMed  CAS  Google Scholar 

  • Dodd, H.M., Horn, N., Hao, Z. and Gasson, M.J. (1992) A lactococcal expression system for engineered nisins. Appl. Environ. Microbiol. 58, 3683–3693.

    PubMed  CAS  Google Scholar 

  • Dodd, H.M., Horn, N. and Gasson M.J. (1993) Characterization of IS905, a new multi-copy IS element identified in lactococci. Molec. Microbiol. in press.

    Google Scholar 

  • Donkershoot, J.A. and Thompson, J. (1990) Simultaneous loss of N5-(carboxyethyl) ornithine synthase, nisin production, and sucrose-fermenting ability by Lactococcus lactis K1. J. Bacteriol. 172, 4122–4126.

    Google Scholar 

  • Dornan, S. and Collins, M.A. (1990) High efficiency electroporation of Lactococcus lactis subsp. lactis LM0230 with plasmid pGB301. Lett. Appl. Microbiol. 11, 62–64.

    PubMed  CAS  Google Scholar 

  • Duwat, P., Ehrlich, S.D. and Gruss, A. (1992) Use of degenerate primers for polymerase chain reaction cloning and sequencing of the Lactococcus lactis subsp. lactis recA gene. Appl. Environ. Microbiol. 58, 2674–2678.

    PubMed  CAS  Google Scholar 

  • Eftymiou, C. and Hansen, P.A. (1962) An antigenic analysis of Lactobacillus acidophilus. J. Infect. Dis. 110, 258–267.

    Google Scholar 

  • Ehrenfeld, E.E., Kessler, R.E. and Clewell, D.B. (1986) Identification of pheromone-induced surface proteins in Streptococcus faecalis and evidence of a role for lipoteichoic acid in formation of mating aggregates. J. Bacteriol., 168, 6–12.

    PubMed  CAS  Google Scholar 

  • Feirtag, J.M., Petzel, J.P., Pasalodos, E., Baldwin, K.A. and McKay, L.L. (1991) Thermosensitive plasmid replication, temperature-sensitive host growth, and chromosomal plasmid integration conferred by Lactococcus lactis subsp. cremoris lactose plasmids in Lactococcus lactis subsp. lactis. Appl. Environ. Microbiol. 57, 539–548.

    PubMed  CAS  Google Scholar 

  • Fitzgerald, G.F. and Clewell D.B. (1985) A conjugative transposon (Tn979) in Streptococcus sanguis. Infect. Immun., 47, 415–420.

    PubMed  CAS  Google Scholar 

  • Fitzgerald, G.F. and Gasson, M.J. (1988) In vivo gene transfer systems and transposons. Biochimie 70, 489–502.

    PubMed  CAS  Google Scholar 

  • Franke, A. and Clewell, D.B. (1981) Evidence for a chromosome-borne resistance transposon (Tn916) in Streptococcus faecalis that is capable of ‘conjugal’ transfer in the absence of a conjugative plasmid. J. Bacteriol. 145, 494–502.

    PubMed  CAS  Google Scholar 

  • Galli, D., Lottspeich, F., Wirth, R (1990) Sequence analysis of Enterococcus faecalis aggregation substance encoded by the sex-pheromone plasmid pADl. Mol. Microbiol. 4, 895–904.

    PubMed  CAS  Google Scholar 

  • Gasson, M.J. (1980) Production, regeneration and fusion of protoplasts in lactic streptococci. FEMS Microbiol. Lett. 9, 99–102.

    Google Scholar 

  • Gasson, M.J. and Davies, F.L. (1980a) Conjugal transfer of the drug resistance plasmid pAMßl in the lactic streptococci. FEMS Microbiol. Lett. 7, 51–53.

    CAS  Google Scholar 

  • Gasson, M.J. and Davies, F.L. (1980b) High frequency conjugation associated with Streptococcus lactis donor cell aggregation. J. Bacteriol. 143, 1260–1264.

    PubMed  CAS  Google Scholar 

  • Gasson, M.J. (1983) Plasmid complements of Streptococcus lactis NCDO712 and other lactic streptococci after protoplast-induced curing. J. Bacteriol. 154, 1–9.

    PubMed  CAS  Google Scholar 

  • Gasson, M.J. (1984) Transfer of sucrose fermenting ability, nisin resistance and nisin production into Streptococcus lactis 712. FEMS Microbiol. Lett. 21, 7–10.

    CAS  Google Scholar 

  • Gasson, M.J. and Davies, F.L. (1984) The genetics of dairy lactic acid bacteria. In: Advances in the Microbiology and Biochemistry of Cheeses and Fermented Milks (Davies, F.L. and Law, B.A., eds), Elsevier Applied Science Publishers, New York, pp. 99–126.

    Google Scholar 

  • Gasson, M.J., Hill, S.H.A. and Anderson, P.H. (1987) Molecular genetics of metabolic traits in lactic streptococci. In Streptococcal Genetics eds. J. Ferretti and R. Curtiss III. American Society for Microbiology pp. 242–245.

    Google Scholar 

  • Gasson, M.J. (1990) In vivo genetic systems in lactic acid bacteria. FEMS Microbiol. Rev. 87, 43–60.

    CAS  Google Scholar 

  • Gasson, M.J., Maeda, S., Swindell, S. and Dodd, H.M. (1992) Molecular rearrangement of lactose plasmid DNA associated with high frequency and cell aggregation in Lactococcus lactis 712. Mol. Microbiol. 6, 3213–3223.

    PubMed  CAS  Google Scholar 

  • Geis, A. (1982) Transfection of protoplasts of Streptococcus lactis subsp. diacetylactis. FEMS Microbiol. Lett. 15, 119–122.

    Google Scholar 

  • Gennaro, M.L., Kornblum, J. and Novick, R.P. (1987) A site-specific recombination function in Staphylococcus aureus plasmids. J. Bacteriol. 154, 1–9.

    Google Scholar 

  • Gibson, E.M., Chace, N.M., London, S.B. and London, J. (1979) Transfer of plasmid mediated antibiotic resistance from streptococci to lactobacilli. J. Bacteriol. 137, 614–617.

    PubMed  CAS  Google Scholar 

  • Gireesh, T., Davidson, B. and Hillier, A.J. (1992) Conjugal transfer in Lactococcus lactis, of a 68-kilobase-pair chromosomal fragment containing the structural gene for the peptide bacteriocin nisin. Appl. Environ. Microbiol. 58, 1670–1676.

    PubMed  CAS  Google Scholar 

  • Gonzalez, C.J. and Kunka, B.S. (1983) Plasmid transfer in Pediococcus sp.: intergenic and intragenic transfer of pIP501. Appl. Environ. Microbiol. 46, 81–89.

    PubMed  CAS  Google Scholar 

  • Gonzalez, C.F. and Kunka, B.S. (1985) Transfer of sucrose fermenting ability and nisin production phenotype among lactic streptococci. Appl. Environ. Microbiol. 49, 627–633.

    PubMed  CAS  Google Scholar 

  • Gruss, A. and Ehrlich, S.D. (1989) The family of highly interrelated single-stranded deoxyribonucleic acid plasmids. Microbiol. Rev. 53, 231–241.

    PubMed  CAS  Google Scholar 

  • Haandrikman, A.J., van Leeuwen, C, Kok, J., Vos, P., De Vos, W.M. and Venema, G. (1990) Insertion elements on lactococcal proteinase plasmids. Appl. Environ. Microbiol. 56, 1890–1896.

    PubMed  CAS  Google Scholar 

  • Harlander, S.K. (1987) Transformation of Streptococcus lactis by electroporaton. In: Streptococcal Genetics (ed. J. Ferretti and R. Curtiss), American Society for Microbiology, Washington, D.C., USA. pp 229–233.

    Google Scholar 

  • Harmon, K.S. and McKay, L.L. (1987) Restriction enzyme analysis of lactose and bacteriocin plasmids from Streptococcus lactis subsp. diacetylactis WM4 and cloning of BcLI fragments coding from bacteriocin production. Appl. Environ. Microbiol. 53, 1171–1174.

    PubMed  CAS  Google Scholar 

  • Hashiba, H., Takiguchi, R., Iskii, S. and Aoyama, K. (1990) Transformation of Lactobacillus helveticus subsp. jugurti with plasmid pLHR by electroporation. Agric. Biol. Chem. 54, 1537–1541.

    PubMed  CAS  Google Scholar 

  • Hayes, F., Caplice, E., McSweeney, A., Fitzgerald, G.F. and Daly, C. (1990a) pAMß1-associated mobilization of proteinase plasmids from Lactococcus lactis subsp. lactis UC317 and L. lactis subsp. cremoris UC205. Appl. Environ. Microbiol. 56, 195–201.

    PubMed  CAS  Google Scholar 

  • Hayes, F., Daly, C. and Fitzgerald, G.F. (1990b) High frequency, site specific recombination between lactococcal and pAMß1 plasmid DNAs. J. Bacteriol. 172, 3485–3489.

    PubMed  CAS  Google Scholar 

  • Hayes, J., Law, J., Daly, C. and Fitzgerald, G.F. (1992) Integration and excision of plasmid DNA in Lactococcus lactis subsp. lactis. Plasmid 24, 81–89.

    Google Scholar 

  • Higgins, D.L., Sanozky-Dawes, R.B. and Klaenhammer, T.R. (1988) Restriction and modification activities from Streptococcus lactis ME2 are encoded by a self—transmissible plasmid pTN20, that forms cointegrates during modification of lactose fermenting ability. J. Bacteriol. 170, 3435–3442.

    PubMed  CAS  Google Scholar 

  • Hill, C., Daly, C. and Fitzgerald, G.F. (1985) Conjugative transfer of the transposon Tn919 to lactic acid bacteria. FEMS Microbiol. Lett. 30, 115–119.

    CAS  Google Scholar 

  • Hill, C., Daly, C. and Fitzgerald, G.F. (1987) Development of high-frequency delivery system for transposon Tn979 in lactic streptococci: random insertion in Streptococcus lactis subsp. Diacetylactis 18–16. Appl. Environ. Microbiol. 53, 74–78.

    PubMed  CAS  Google Scholar 

  • Hill, C., Daly, C. and Fitzgerald, G.F. (1991) Isolation of chromosomal mutation of Lactococcus lactis subsp. lactis biovar. diacetylactis 18–16 after introduction of Tn979. FEMS Microbiol. Lett. 135–140.

    Google Scholar 

  • Holo, H. and Nes, I.F. (1989) High—frequency transformation, by electroporation, of Lactococcus lactis subsp. cremoris grown with glycine in osmotically stabilized media. Appl. Environ. Microbiol. 55, 3119–3123.

    PubMed  CAS  Google Scholar 

  • Horn, N., Swindell, S., Dodd, H.M. and Gasson, M.J. (1991) Nisin biosynthesis genes are encoded by a novel conjugative transposon. Mol. Gen. Genet. 228, 129–135.

    PubMed  CAS  Google Scholar 

  • Horng, J.S., Polzin, K.M. and McKay, L.L. (1991) Replication and temperature-sensitive maintenance functions of lactose plasmid pSK1 1L from Lactococcus lactis subsp. cremoris. J. Bacteriol. 173, 7573–7581.

    PubMed  CAS  Google Scholar 

  • Huang, D.C., Novel, M. and Novel, G. (1991) A transposon-like element on the lactose plasmid of Lactococcus lactis subsp. lactis 2270. FEMS Microbiol. Lett. 77, 101–106.

    CAS  Google Scholar 

  • Israelson, H. and Hansen, E.B. (1993) Insertion of transposon Tn917 derivatives into the Lactococcus lactis subsp. lactis chromosome. Appl. Environ. Microbiol. 59, 21–26.

    Google Scholar 

  • Iwata, M., Mada, M. and Ishiwa, H. (1986) Protoplast fusion of Lactobacillus fermentum. Appl. Environ. Microbiol. 52, 392–393.

    PubMed  CAS  Google Scholar 

  • Jarvis, A.W. (1988) Conjugal transfer in lactic streptococci of plasmid-encoded insensitivity to prolate and small isometric—headed bacteriophage. Appl. Environ. Microbiol. 54, 777–783.

    PubMed  CAS  Google Scholar 

  • Johansen, E. and Kibenich, A. (1992) Isolation and characterization of IS 1165 an insertion sequence of Leuconostoc mesenteroids subsp. cremoris and other lactic acid bacteria. Plasmid 27, 200–206.

    PubMed  CAS  Google Scholar 

  • Kanatani, K., Yoshida, K., Tahara, T., Sakamoto, M. and Oshimura, M. (1990) Intraspecific protoplast fusion of Lactobacillus plantarum. Agric. Biol. Chem. 54, 225–227.

    PubMed  CAS  Google Scholar 

  • Kempler, G.M., Baldwin, K.A., McKay, L.L., Morris, H.A., Halambeck, S. and Thorsen, G. (1979) Use of genetic alterations to improve Streptococcus lactis C2 as a potential Cheddar cheese starter. J. Dairy Sci. 62, (Suppl. 1) 42.

    Google Scholar 

  • Kim, W.J., Ray, B. and Johnson, M.C. (1992) Plasmid transfers by conjugation and electroporation in Pediococcus acidilactici. J. Appl. Bacteriol. 72, 201–207.

    CAS  Google Scholar 

  • Klaenhammer, T.R. and McKay, L.L. (1976) Isolation and examination of transducing bacteriophage particles from Streptococcus lactis C2. J. Dairy Sci. 59, 396–404.

    PubMed  CAS  Google Scholar 

  • Kok, J., van Dijl, J.M., van der Vossen, J.M.B.M. and Venema, G. (1985) Cloning and expression of a Streptococcus cremoris proteinase in Bacillus subtilis and Streptococcus lactis. Appl. Environ. Microbiol. 50, 94–101.

    PubMed  CAS  Google Scholar 

  • Kondo, J.K. and McKay, L.L. (1982a) Transformation of Streptococcus lactis protoplasts by plasmid DNA. Appl. Environ. Microbiol. 43, 1213–1215.

    PubMed  CAS  Google Scholar 

  • Kondo, J.K. and McKay, L.L. (1982b) Mutanolysin for improved lysis and rapid protoplast formation in dairy streptococci. J. Dairy Sci. 65, 1428–1431.

    CAS  Google Scholar 

  • Kondo, J.K. and McKay, L.L. (1984) Plasmid transformation of Streptococcus lactis protoplasts: Optimization and use in molecular cloning. Appl. Environ. Microbiol. 48, 252–259.

    PubMed  CAS  Google Scholar 

  • Lahbib-Mansias, Y., Mata, M. and Ritzenthaler, P. (1988) Molecular taxonomy of Lactobacillus phages. Biochimie 70, 429–435.

    Google Scholar 

  • Lakshmidevi, G., Davidson, B.E. and Hillier, A.J. (1988) Circular permutation of the genome of a temperate bacteriophage from Streptococcus cremoris BK5. Appl. Environ. Microbiol. 54, 1039–1045.

    PubMed  CAS  Google Scholar 

  • Langella, P. and Chopin, A. (1987) Evaluation of conjugative gene transfer systems in lactic acid bacteria. FEMS Microbiol. Rev. 46, 6.

    Google Scholar 

  • Langella, P. and Chopin, A. (1989) Effect of restriction-modification systems on transfer of foreign DNA into Lactococcus lactis subsp. lactis. FEMS Microbiol. Lett. 59, 301–306.

    CAS  Google Scholar 

  • Le Bourgeois, P., Mata, M. and Ritzentnaler, P. (1989) Genome comparison of Lactococcus strains by pulsed—field gel electrophoresis. FEMS Microbiol. Lett. 59, 65–70.

    Google Scholar 

  • Le Bourgeois, P., Lautier, M., Mata, M. and Ritzenthaler, P. (1992a) New tools for the physical and genetic mapping of Lactococcus strains. Gene 111, 109–114.

    PubMed  Google Scholar 

  • Le Bourgeois, P., Lautier, M., Mata, M. and Ritzenthaler, P. (1992b) Physical and genetic map of the chromosome of Lactococcus lactis subsp. lactis IL 1403. J. Bacteriol. 174, 6752–6762.

    PubMed  Google Scholar 

  • Leenhouts, K.J., Kok, J. and Venema, G. (1989) Campbell-like integration of heterologous plasmid DNA into the chromosome of Lactococcus lactis subsp. lactis. Appl. Environ. Microbiol. 55, 394–400.

    PubMed  CAS  Google Scholar 

  • Leenhouts, K.J., Kok J., and Venema, G. (1990) Stability of integrated plasmids in the chromosome of Lactococcus lactis. Appl. Environ. Microbiol. 56, 2726–2735.

    PubMed  CAS  Google Scholar 

  • Leenhouts, K.J., Gietema, J., Kok, J. and Venema, G. (1991a) Chromosomal stabilization of the proteinase genes in Lactococcus lactis. Appl. Environ. Microbiol. 57, 2568–2575.

    PubMed  CAS  Google Scholar 

  • Leenhouts, K.J., Kok, J., and Venem, G. (1991b) Replacement recombination in Lactococcus lactis. J. Bacteriol. 173, 4769–4798.

    Google Scholar 

  • Leenhouts, K.J., Kok, J. and Venema, G. (1991c) Lactococcal plasmid pWV01 as an integration vector for lactococci. Appl. Environ. Microbiol. 57, 2562–2567.

    PubMed  CAS  Google Scholar 

  • Lee-Wickner, L.-J. and Chassy, B.M. (1984) Production and regeneration of Lactobacillus casei protoplasts. Appl. Environ. Microbiol. 48, 994–1000.

    PubMed  CAS  Google Scholar 

  • Lin, J.H.-C. and Savage, D.C. (1986) Genetic transformation of rifampicin resistance in Lactobacillus acidophilus. J. Gen. Microbiol. 132, 2107–2111.

    PubMed  CAS  Google Scholar 

  • Loureiro dos Santos, A.L. and Chopin, A. (1987) Shotgun cloning in Streptococcus lactis. FEMS Microbiol. Lett. 42, 209–212.

    CAS  Google Scholar 

  • Luchansky, J.B., Kleeman, E.G., Raya, R.R. and Klaenhammer, T.R. (1989) Genetic transfer systems for delivery of plasmid DNA to Lactobacillus acidophilus ADH: conjugation, electroporation and transduction. J. Dairy Sci. 72, 1408–1417.

    PubMed  CAS  Google Scholar 

  • Luchansky, J.B., Muriana, P.M. and Klaenhammer, T.R. (1988) Application of electroporation for transfer of plasmid DNA into Lactobacillus, Leuconostoc, Listeria, Pediococcus, Bacillus, Staphylococcus, Enterococcus and Propionibacterium. Mol. Microbiol. 2, 637–646.

    PubMed  CAS  Google Scholar 

  • Maeda, S. and Gasson, M.J. (1986) Cloning, expression and location of the Streptococcus lactis gene for phospho ß-D-galactosidase. J. Gen. Microbiol. 132, 331–340.

    PubMed  CAS  Google Scholar 

  • Maguin, E., Duwat, P., Hege, T., Ehrlich, D. and Gruss, A. (1992) New thermosensitive plasmid for gram-positive bacteria. J. Bacteriol. 174, 5633–5638.

    PubMed  CAS  Google Scholar 

  • McCarthy, D.M., Lin, J.H.-C, Rinckel, L.A. and Savage, D.C. (1988) Genetic transformation in Lactobacillus sp. strain 100–33 of the capacity to colonize the non-secreting gastric epithelium in mice. Appl. Environ. Microbiol. 54, 416–22.

    PubMed  CAS  Google Scholar 

  • McIntyre, D.A. and Harlander, S.K. (1989a) Genetic transformation of intact Lactococcus lactis supsp. lactis by high voltage electroporation. Appl. Environ. Microbiol. 55, 604–610.

    PubMed  CAS  Google Scholar 

  • McIntyre, D.A. and Harlander, S.K. (1989b) Improved electroporation efficiency of intact Lactococcus lactis subsp. lactis cells grown in defined media. Appl. Environ. Microbiol. 55, 2621–2626.

    PubMed  CAS  Google Scholar 

  • McKay, L.L., Cords, B.R. and Baldwin, K.A. (1973) Transduction of lactose metabolism in Streptococcus lactis C2. J. Bacteriol. 115, 810–815.

    PubMed  CAS  Google Scholar 

  • McKay, L.L. and Baldwin, K.A. (1974) Simultaneous loss of proteinase- and lactose-utilizing enzyme activities in Streptococcus lactis and reversal of loss by transduction. Appl. Environ. Microbiol. 28, 342–346.

    CAS  Google Scholar 

  • McKay, L.L. and Baldwin, K.A. (1978) Stabilization of lactose metabolism in Streptococcus lactis C2. Appl. Environ. Microbiol. 36, 360–367.

    PubMed  CAS  Google Scholar 

  • McKay, L.L., Baldwin, K.A. and Efstathiou, J.D. (1976) Transductional evidence for plasmid linkage of lactose metabolism in Streptococcus lactis C2. Appl. Environ. Microbiol. 32, 45–52.

    PubMed  CAS  Google Scholar 

  • McKay, L.L., Baldwin, K.A. and Walsh, P.M. (1980) Conjugal transfer of genetic information in group N streptococci. Appl. Environ. Microbiol. 40, 84–91.

    PubMed  CAS  Google Scholar 

  • Mercenier, A. and Chassy, B.M. (1988) Strategies for the development of bacterial transformation systems. Biochimie 70, 503–517.

    PubMed  CAS  Google Scholar 

  • Mercenier, A. and Lemoine, Y. (1989) Genetics of Streptococcus thermophilus: A Review. J. Dairy Sci. 72, 3444–3454.

    Google Scholar 

  • Mercenier, A., Robert, C., Romero, D.A., Costellino, I., Slos, P. and Lemoine, Y. (1988) Development of an efficient spheroplast transformation procedure for S. thermophilics: the use of transfection to define a regeneration medium. Biochimie 70, 567–577.

    PubMed  CAS  Google Scholar 

  • Mercenier, A., Slos, P., Fallen, M. and Lecocq, J.P. (1988) Plasmid transduction in Streptococcus thermophilus. Mol. Gen. Genet. 212, 386–389.

    PubMed  CAS  Google Scholar 

  • Moller-Madsen, A.A. and Jensen, H. (1962) Transformation of Streptococcus lactis. In: Contributions to the XVIth International Dairy Congress, Copenhagen, Vol.B 255.

    Google Scholar 

  • Molskness, T.A., Sandine, W.E. and Elliker, L.R. (1974) Characterization of Lac+ transductants of Streptococcus lactis. Appl. Environ. Microbiol. 28, 753–758.

    CAS  Google Scholar 

  • Morelli, L., Cocconcelli, P.S., Bottazzi, V., Damiani, G., Ferretti, L. and Sgaramella, V. (1987) Lactobacillus protoplast transformation. Plasmid 17, 73–75.

    PubMed  CAS  Google Scholar 

  • Murphy, E. (1989) Transposable elements in Gram-positive bacteria. In: Mobile DNA (eds Berg, D.E., and Howe, M.M.) American Society for Microbiology, Washington, D.C., p.269–288.

    Google Scholar 

  • Neumann, E., Schaefer-Ridder, M., Wang, Y. and Hofschneider, P. (1982) Gene transfer into mouse myeloma cells by electroporation in high electric fields. EMBO J. 1, 841–845.

    PubMed  CAS  Google Scholar 

  • Neve, H., Geis, A. and Teuber, M. (1984) Conjugal transfer and characterization of bacteriocin Plasmids in group N (lactic acid) streptococci. J. Bacteriol. 157, 833–838.

    PubMed  CAS  Google Scholar 

  • Novel, M., Huan, X.F. and Novel, G. (1990) Cloning of a chromosomal fragment from Lactococcus lactis subsp. lactis partially complementing Escherichia coli recA functions. FEMS. Microbiol. Lett. 12, 309–314.

    Google Scholar 

  • Okamoto, T., Fujita, Y. and Irie, R. (1983) Fusion of protoplasts of Streptococcus lactis. Agric. Biol. Chem. 47, 2675–2676.

    CAS  Google Scholar 

  • Okamoto, T., Fujita, Y. and Irie, R. (1985) Interspecific protoplast fusion between Streptococcus cremoris and Streptococcus lactis. Agric. Biol. Chem. 49, 1371–1376.

    CAS  Google Scholar 

  • Otts, D.R. and Day, D.F. (1987) Optimization of protoplast formation and regeneration in Leuconostoc mesenteroides. Appl. Environ. Microbiol. 53, 1694–1695.

    PubMed  CAS  Google Scholar 

  • Petzel, J. and McKay, L.L. (1992) Molecular characterization of the integration of the lactose plasmid from Lactococcus lactis subsp. cremoris SK1 1 into the chromosome of L. lactis subsp. lactis. Appl. Environ. Microbiol. 58, 125–131.

    PubMed  CAS  Google Scholar 

  • Polzin, K.A. and Shimizu-Kadota, M. (1987) Identification of a new insertion element similar to gram-negative IS26, on the lactose plasmid of Streptococcus lactis ML3. J. Bacteriol. 169, 5481–5488.

    PubMed  CAS  Google Scholar 

  • Polzin, K.M. and McKay, L.L. (1991) Identification, DNA sequence, distribution of IS98I, a new high-copy-number insertion sequence in lactococci. Appl. Environ. Microbiol. 57, 734–743.

    PubMed  CAS  Google Scholar 

  • Polzin, K.M. and McKay, L.L. (1992) Development of a lactococcal integration vector by using IS98I and a temperature-sensitive lactococcal replication region. Appl. Environ. Microbiol. 58, 476–184.

    PubMed  CAS  Google Scholar 

  • Posno, M., Leer, R.J., van Luijk, N., van Giezen, M.J.F., Hewelmans, P.T.H.M., Lokman, B.C. and Pouwels, P.H. (1991) Incompatibility of Lactobacillus vectors with replicons derived from small cryptic Lactobacillus plasmids and segregational instability of the introduced vectors. Appl. Environ. Microbiol. 57, 1822–1828.

    PubMed  CAS  Google Scholar 

  • Powell, I.B., Achen, M.G., Hillier, A. and Davidson, B.E. (1988) A simple and rapid method for genetic transformation of lactic streptococci by electroporation. Appl. Environ. Microbiol. 54, 655–660.

    PubMed  CAS  Google Scholar 

  • Pucci, M.J., Monteschio, M.E. and Vedamutha, E.R. (1987) Conjugal transfer in Leuconostoc spp: intergeneric and intrageneric transfer of plasmid-encoded antibiotic resistance determinants. FEMS Microbiol. Lett. 46, 7.

    Google Scholar 

  • Rauch, P.J.G. and De Vos, W.M. (1992) Characterization of the novel nisin-sucrose conjugative transposon Tn5276 and its insertion in Lactococcus lactis. J. Bacteriol. 174, 1280–1287.

    PubMed  CAS  Google Scholar 

  • Raya, R.R. and Klaenhammer, T.R. (1992) High-frequency plasmid transduction by Lactobacillus gasseri bacteriophage Øadh. Appl. Environ. Microbiol. 58, 187–193.

    PubMed  CAS  Google Scholar 

  • Raya, R.R., Kleeman, E.G., Luchansky, J.B. and Klaenhammer, T.R. (1989) Characterization of the temperate bacteriophage Øadh and plasmid transduction in Lactobacillus acidophilus ADH. Appl. Environ. Microbiol. 55, 2206–2213.

    PubMed  CAS  Google Scholar 

  • Renault, P.P. and Heslot, H. (1987) Selection of Streptococcus lactis mutants defective in malolactic fermentation. Appl. Environ. Microbiol. 53, 320–324.

    PubMed  CAS  Google Scholar 

  • Reniero, R., Cocconcelli, P., Bottazzi V. and Morelli, L. (1992) High frequency of conjugation in Lactobacillus mediated by an aggregation-promoting factor. J. Gen. Microbiol. 138, 763–768.

    CAS  Google Scholar 

  • Romero, A., Slos, P., Castellina, R.L., Castelinna, I. and Mercenier, A. (1987) Conjugative mobilization as an alternative vector delivery system for lactic streptococci. Appl. Environ. Microbiol. 53, 2405–2413.

    PubMed  CAS  Google Scholar 

  • Romero, D.A. and Klaenhammer, T.R. (1990) Characterization of insertion sequence 15946, an iso-ISSI element, isolated from the conjugative lactococcal plasmid pTR2030. J. Bacteriol. 172, 4151–4160.

    PubMed  CAS  Google Scholar 

  • Romero, D.A. and Klaenhammer, T.R. (1991) Construction of an IS946-based composite transposon in Lactococcus lactis subsp. lactis. J. Bacteriol. 173, 7599–7606.

    PubMed  CAS  Google Scholar 

  • Romero, D.A. and Klaenhammer, T.R. (1992) IS946-mediated integration of heterologous DNA into the genome of Lactococcus lactis subsp. lactis. Appl. Environ. Microbiol. 58, 699–702.

    PubMed  CAS  Google Scholar 

  • Salama, M., Sandine, W.E. and Giovannoni, S. (1991) Development and application of oligonucleotide probes for identification of Lactococcus lactis subsp. cremoris. Appl. Environ. Microbiol. 57, 1313–1318.

    PubMed  CAS  Google Scholar 

  • Sanders, M.E. and Nicholson, M.A. (1987) A method for genetic transformation of non-protoplasted Streptococcus lactis. Appl. Environ. Microbiol. 53, 1730–1736.

    PubMed  CAS  Google Scholar 

  • Sandine, W.E., Elliker, P.R., Allen, L.K. and Brown, W.C. (1962) Genetic exchange and variability in lactic streptococcus starter organisms. J. Dairy Sci. 45, 1266–1271.

    CAS  Google Scholar 

  • Schäfer, A., Jahns, A., Geis, A. and Teuber, M. (1991) Distribution of the IS elements ISSI and IS904 in lactococci. FEMS Microbiol. Lett. 80, 311–318.

    Google Scholar 

  • Scheirlinck, T., Manillon, J., Joos, H., Dhaese, P. and Michiels, F. (1989) Integration and expression of αamylase and endoglucanase genes in the Lactobacillus plantarum chromosome. Appl. Environ. Microbiol. 55, 2130–2137.

    PubMed  CAS  Google Scholar 

  • Scherwitz, K.M., Baldwin, K.A. and McKay, L.L. (1983) Plasmid linkage of a bacteriocin-like substance in Streptococcus lactis. subsp. diacetylactis strain WM4: transferability to Streptococcus lactis. Appl. Environ. Microbiol. 45, 1506–1512.

    PubMed  CAS  Google Scholar 

  • Sechaud, L., Cluzel, P.-J., Rousseau, M., Baumgartner, A. and Accolas, J.-P. (1988) Bacteriophages of lactobacilli. Biochimie 70, 401–410.

    PubMed  CAS  Google Scholar 

  • Shimizu-Kadota, M. and Kudo, S. (1984) Liposome-mediated transfection of Lactobacillus casei spheroplasts. Agric. Biol. Chem. 48, 1105–1107.

    CAS  Google Scholar 

  • Shimizu-Kadota, M., Kirki, M., Hirokawa, H. and Tsuchida, N., (1985) ISLI: a new transposable element in Lactobacillus casei. Mol. Gen. Genet. 200, 193–198.

    PubMed  CAS  Google Scholar 

  • Shimuzu-Kadota, M., Flickinger, J.L. and Chassy, B.M. (1988) Evidence that Lactobacillus casei insertion element ISLI has a narrow host range. J. Bacteriol. 170, 4976-1978.

    Google Scholar 

  • Shivarova, N., Forster, W., Jacob, H.-E. and Grigorova, R. (1983) Microbiological implications of electric field effects. VII. Stimulation of plasmid transformation of Bacillus cereus protoplasts by electric field pulses. Z. Allg. Mikrobiol. 23, 595–599.

    Google Scholar 

  • Shrago, A.W., Chassy, B.M. and Dobrgosym, W.J. (1986) Conjugal plasmid transfer (pAMß1) in Lactobacillus plantarum. Appl. Environ. Microbiol. 52, 574–576.

    PubMed  CAS  Google Scholar 

  • Simon, D., Rouault, A. and Chopin, M.-C. (1985) Protoplast transformation of group N streptococci with cryptic plasmids. FEMS Microbiol. Lett. 26, 239–241.

    CAS  Google Scholar 

  • Simon, D., Rouault, A. and Chopin, M.-C. (1986) High-efficiency transformation of Streptococcus lactis protoplasts by plasmid DNA. Appl. Environ. Microbiol. 52, 394–395.

    PubMed  CAS  Google Scholar 

  • Smith, M.D. and Clewell, D.B. (1984) Return of Streptococcus faecalis DNA cloned in Escherichia coli to its original host via transformation of Streptococcus sanguis followed by conjugative mobilization. J. Bacteriol. 160, 1109–1114.

    PubMed  CAS  Google Scholar 

  • Snook, R.J., McKay, L.L. and Ahlstrand, G.G. (1981) Transduction of lactose metabolism by Streptococcus cremoris C3 temperate phage. Appl. Environ. Microbiol. 42, 897–903.

    PubMed  CAS  Google Scholar 

  • Somkuti, G.A. and Steinberg, D.H. (1988) Genetic transformation of Streptococcus thermophilus by electroporation. Biochimie 70, 579–585.

    PubMed  CAS  Google Scholar 

  • Steele, J.L. and McKay, L.L. (1986) Partial characterization of the genetic basis for sucrose metabolism and nisin production in Streptococcus lactis. Appl. Environ. Microbiol. 51, 57–64.

    PubMed  CAS  Google Scholar 

  • Steele, J.L. and McKay, L.L. (1989) Conjugal transfer of genetic material by Lactococcus lactis subsp. lactis 110067. Plasmid 22, 32-43.

    PubMed  CAS  Google Scholar 

  • Steele, J.L., Polzin, K.M. and McKay L.L. (1989) Characterization of the genetic element coding for lactose metabolism in Lactococcus lactis subsp. lactis KP3. Plasmid 22, 44–51.

    PubMed  CAS  Google Scholar 

  • Swindell, S., Underwood, H.M. and Gasson, M.J. (1993) Construction and analysis of a plasmid-free L. lactis subsp. lactis strain carrying chromosomally integrated lactose genes. J. Gen. Microbiol. (in press)

    Google Scholar 

  • Tanaskanen, E.L., Tulloch, D.L., Hillier, A.J. and Davidson, B.E. (1990) Pulsed-field gel electrophoresis of SmaI digests of lactococcal genomic DNA, a novel method of strain identification. Appl. Environ. Microbiol. 56, 3105–3111.

    Google Scholar 

  • Terzaghi, B.E. and Sandine, W.E. (1975) Improved medium for lactic streptococci and their bacteriophages. Appl. Microbiol. 29, 807–813.

    PubMed  CAS  Google Scholar 

  • Thompson, J., Nguyen, N.G., Sackett, D.L. and Donkershoot, J.A. (1991) Transposon-encoded sucrose metabolism in Lactococcus lactis. J. Biol. Chem. 266, 14573–14579.

    PubMed  CAS  Google Scholar 

  • Tohyama, K., Sakurai, T. and Arai, H. (1971) Transduction by temperate phage PLS-1 in Lactobacillus salivarius. Jpn. J. Bacteriol. 26, 482–487.

    Google Scholar 

  • Trautwetter, A., Ritzenthaler, P., Alatossava, T. and Mata-Gilsinger, M. (1986) Physical and genetic characterization of the genome of Lactobacillus lactis bacteriophage LL–H. J. Virol. 59, 551–555.

    PubMed  CAS  Google Scholar 

  • Trieu-Cout, P., Carlier, C., Martin, P. and Courvalin, P. (1987) Plasmid transfer by conjugation from Escherichia coli to gram-positive bacteria. FEMS Microbiol. Lett. 48, 289–294.

    Google Scholar 

  • Tsai, H.J. and Sandine, W.E. (1987) Conjugal transfer of nisin plasmid genes from Streptococcus lactis 7962 to Leuconostoc dextranicum 181. Appl. Environ. Microbiol. 53, 352–357.

    PubMed  CAS  Google Scholar 

  • Tulloch, D.L., Finch, L.R., Hillier, A.J. and Davidson, B.E. (1991) Physical map of the chromosome of Lactococcus lactis subsp. lactis DL11 and localization of six putative rRNA operons. J. Bacteriol. 173, 2768–2775.

    PubMed  CAS  Google Scholar 

  • Van der Lehe, D., van der Vossen, J.M.B.M. and Venema, G. (1988) Effect of plasmid incompatibility on DNA transfer to Streptococcus cremoris. Appl. Environ. Microbiol. 54, 865–871.

    Google Scholar 

  • Van der Lelie, D., Wörten, H.A.B., Bron, S., Oskam, L. and Venema, G. (1990) Conjugal mobilization of streptococcal plasmid pMV158 between strains of Lactococcus lactis subsp. lactis. J. Bacteriol. 172, 47–52.

    PubMed  Google Scholar 

  • Van der Lelie, D., Chavarri, F., Venema, G. and Gasson, M.J. (1991) Identification of a new genetic determinant for cell aggregation associated with lactose plasmid transfer in Lactococcus lactis. Appl. Environ. Microbiol. 57, 201–206.

    PubMed  Google Scholar 

  • Van der Vossen, J.M.B.M., Kok, J., Van der Lelie, D. and Venema, G. (1988) Liposome-enhanced transformation of Streptococcus lactis and plasmid transfer by intergeneric protoplast fusion of Streptococcus lactis and Bacillus subtilis. FEMS Microbiol. Lett. 49, 323–329.

    Google Scholar 

  • Vescovo, M., Morelli, L., Bottazzi, A. and Gasson, M.J. (1983) Conjugal transfer of broad host range plasmid pAMß1 into enteric species of lactic acid bacteria. Appl. Environ. Microbiol. 46, 753–755.

    PubMed  CAS  Google Scholar 

  • Vescovo, M., Morelli, L., Cocconcelli, P.S. and Bottazzi, V. (1984) Protoplast formation, regeneration and plasmid curing in Lactobacillus reuteri. FEMS Microbiol. Lett. 23, 333–334.

    CAS  Google Scholar 

  • Von Wright, A., Taimisto, A.M. and Sivela, S. (1985) Effect of Ca2+ ions on plasmid transformation of Streptococcus lactis protoplasts. Appl. Environ. Microbiol. 50, 1100–1102.

    Google Scholar 

  • Walsh, P.M. and McKay L.L. (1981) Recombinant plasmids associated with cell aggregation and high frequency conjugation of Streptococcus lactis ML3. J. Bacteriol. 146, 937–944.

    PubMed  CAS  Google Scholar 

  • Walsh, P.M. and McKay, L.L. (1982) Restriction endonuclease analysis of the lactose plasmid in Streptococcus lactis ML3 and two recombinant lactose plasmids. Appl. Environ. Microbiol. 43, 1006–1010.

    PubMed  CAS  Google Scholar 

  • Ward, L.J.H. and Jarvis, A.W. (1991) Rapid electroporation-mediated plasmid transfer between Lactococcus lactis and Escherichia coli without the need for plasmid preparation. Lett. Appl. Microbiol. 13, 278–280.

    Google Scholar 

  • Watanabe, K., Hayashida, M., Nakashima, Y. and Hayashi, S. (1987) Preparation and regeneration of bacteriophage PL-1 enzyme-induced Lactobacillus casei protoplasts. Appl. Environ. Microbiol. 53, 2686–2688.

    PubMed  CAS  Google Scholar 

  • West, C.A., and Warner, P.J. (1985) Plasmid profiles and transfer of plasmid-encoded antibiotic resistance in Lactobacillus plantarum. Appl. Environ. Microbiol. 50, 1319–1321.

    PubMed  CAS  Google Scholar 

  • Woskow, S.A. and Kondo, J.K. (1987) Effect of proteolytic enzymes on transfection and transformation of Streptococcus lactis protoplasts. Appl. Environ. Microbiol. 53, 2583–2587.

    PubMed  CAS  Google Scholar 

  • Wyckoff, H.A., Sandine, W.E. and Kondo, J.K. (1991) Transformation of dairy Leuconostoc using plasmid vectors from Bacillus, Escherichia, and Lactococcus hosts. J. Dairy Sci. 74, 1454–1460.

    CAS  Google Scholar 

  • Youngman, P., Juber, P., Perkins, J.B., Sondman, K., Igo, M. and Lovick, R. (1985) New ways to study developmental genes in spore-forming bacteria. Science 228, 285–291.

    PubMed  CAS  Google Scholar 

  • Youngman, P.J. (1987) Plasmid vectors for recovering and exploiting Tn917 transpositions in Bacillus and other gram positive bacteria. In Plasmids: A Practical Approach (Hardy, K.G. ed), pp. 79–103. IRL Press, Washington D.C., U.S.A.

    Google Scholar 

  • Zinder, N.D. and Lederberg, J. (1952) Genetic exchange in Salmonella. J. Bacteriol. 64, 679–699.

    PubMed  CAS  Google Scholar 

  • Zink, A., Klein, J.R. and Plapp, R. (1991) Transformation of Lactobacillus delbruckii ssp. lactis by electroporation and cloning of origins of replication by use of a positive selection vector. FEMS Microbiol. Lett. 78, 207–212.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Gasson, M.J., Fitzgerald, G.F. (1994). Gene transfer systems and transposition. In: Gasson, M.J., De Vos, W.M. (eds) Genetics and Biotechnology of Lactic Acid Bacteria. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1340-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1340-3_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4584-1

  • Online ISBN: 978-94-011-1340-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics