Gene transfer systems and transposition

  • M. J. Gasson
  • G. F. Fitzgerald


The lactic acid bacteria have evolved and been selected for exploitation in a variety of food fermentation processes. The strains currently available have been subject to gene introduction and genetic reorganization by a variety of natural mechanisms. The study of these mechanisms of gene transfer and DNA rearrangement has led to the development of genetic techniques that can be exploited for strain improvement. These systems complement the genetic engineering methods that are described in chapter 2. This chapter covers the characterization and exploitation of conjugation, transduction and transformation in lactic acid bacteria and the exploitation of generalized recombination and chromosomal integration. The lactic acid bacteria harbour a large number of transposable genetic elements and these undoubtedly contribute to the genetic instability that appears characteristic of many strains. The characterization of the known IS elements and the nisin transposon are described as well as the exploitation of heterologous transposons for genetic analysis. The recent development of pulsed field gel electrophoresis for analysis of whole chromosomes together with some elegant genetic strategies has led to progress in physical and genetic mapping of lactococcal genomes which is also reviewed.


Lactic Acid Bacterium Electric Field Pulse Lactobacillus Plantarum Lactobacillus Casei Conjugal Transfer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahn, C., Collins-Thompson, D., Duncan, C and Stiles, M.E. (1992) Mobilization and location of the genetic determinant of chloramphenicol resistance from Lactobacillus plantarum ca TC2R. Plasmid 27, 169–176.PubMedGoogle Scholar
  2. Allen, L.K., Sandine, W.E. and Elliker, P.R. (1963) Transduction in Streptococcus lactis. J. Dairy Res. 30, 351–357.Google Scholar
  3. Anderson, D.G. and McKay, L.L. (1983) Isolation of a recombination-deficient mutant of Streptococcus lactis ML3. J. Bacteriol. 155, 930–932.PubMedGoogle Scholar
  4. Anderson, D.G. and McKay, L.L. (1984) Genetic and physical characterization of recombinant plasmids associated with cell aggregation and high frequency conjugal transfer in Streptococcus lactis ML3. J. Bacteriol. 156, 954–962.Google Scholar
  5. Anderson, P.H. and Gasson, M.J. (1985) High copy number plasmid vectors for use in lactic streptococci. FEMS Microbiol. Lett. 30, 193–196.Google Scholar
  6. Arber, W. (1960) Transduction of chromosomal genes and episomes in Escherichia coli. Virology 11, 273–288.PubMedGoogle Scholar
  7. Aukrust, T. and Nes, I.F. (1988) Transformation of Lactobacillus plantarum with the plasmid pTVl by electroporation. FEMS Microbiol. Lett. 52, 127–132.Google Scholar
  8. Badii, R., Jones, S. and Warner, P.J. (1989) Spheroplast and electroporation-mediated transformation of Lactobacillus plantarum. Lett. Appl. Microbiol. 9, 41–44.Google Scholar
  9. Baumgartner, A., Murphy, M., Daly, C. and Fitzgerald, G.F. (1986) Conjugative co-transfer of lactose and bacteriophage resistance plasmids from Streptococcus cremoris UC653. FEMS Microbiol. Lett. 35, 233–237.Google Scholar
  10. Beresford, T.P.J. (1991) A physiological and genetic study of ribosomal RNA synthesis in Lactococcus lactis subsp. lactis. PhD Thesis, National University of Ireland, University College, Cork.Google Scholar
  11. Boizet, B., Flickinger, J.L. and Chassy, B.M. (1988) Transfection of Lactobacillus bulgaricus protoplasts by bacteriophage DNA. Appl. Environ. Microbiol. 54, 3014–3018.PubMedGoogle Scholar
  12. Bringel, F., van Ustine, G.L. and Scott, J.R. (1991) A host factor absent from Lactococcus lactis subsp. lactis MG1363 is required for conjugative transposition Molec. Microbiol. 5, 2983–2993.Google Scholar
  13. Bringel, F., van Alstine, G.L. and Scott, J.R. (1992) Transfer of Tn976 between Lactococcus lactis subsp. lactis strains is nontranspositional: evidence for a chromosomal fertility function in strain MG1363. J. Bacteriol. 174, 5840–5847.PubMedGoogle Scholar
  14. Broadbent, J.R. and Kondo, J.K. (1991) Genetic construction of nisin-producing Lactococcus lactis subsp. cremoris and analysis of a rapid method for conjugation. Appl. Environ. Microbiol. 57, 517–524.PubMedGoogle Scholar
  15. Camilli, A., Portnoy, D.A. and Youngman, P. (1990) Insertional mutagenesis of Listeria monocytogenes with a novel Tn977 derivative that allows direct cloning of DNA flanking transposon insertions. J. Bacteriol. 172, 3738–3744.PubMedGoogle Scholar
  16. Canard, B. and Cole, S.J. (1989) Genome organisation of the anaerobic pathogen Clostridium perfringens. Proc. Natl. Acad. Sci. U.S.A. 86, 6676–6680.PubMedGoogle Scholar
  17. Casey, J., Daly, C. and Fitzgerald, G.F. (1992) Controlled integration into the Lactococcus chromosome of the pCI829-encoded abortive infection gene from Lactococcus lactis subsp. lactis UC811. Appl. Environ, Microbiol. 58, 3283–3291.Google Scholar
  18. Chang, S. and Cohen, S.N. (1979) High frequency transformation of Bacillus subtilis protoplasts by Plasmid DNA. Mol. Gen. Genet. 168, 111–115.PubMedGoogle Scholar
  19. Chassy, B.M. and Rokaw. E. (1981) Conjugal transfer of plasmid-associated lactose metabolism in Lactobacillus casei subsp. casei. in: Molecular Biology, Pathogenesis and Ecology of Bacterial Plasmids, eds. Levy, S., Clowes, R. and Koenig, E., Plenum Press, New York, p 590.Google Scholar
  20. Chassy, B.M. (1987) Prospects for the genetic manipulation of lactobacilli. FEMS Microbiol. Rev. 46, 279–312.Google Scholar
  21. Chassy, B.M. and Flickinger, J.L. (1987) Transformation of Lactobacillus casei by electroporation. FEMS Microbiol. Lett 44, 173–177.Google Scholar
  22. Chassy, B.M., Mercenier, A. and Flickinger, J. (1988) Transformation of bacteria by electroporation. TIBTECH 6, 303–309.Google Scholar
  23. Chopin, M.-C., Chopin, A., Rouault, A. and Galleron, N. (1989) Insertion and amplification of foreign genes in the Lactococcus lactis subsp. lactis chromosome. Appl. Environ. Microbiol., 55, 1769–1774.PubMedGoogle Scholar
  24. Cluzel, P-J., Chopin, A., Ehrlich, S.D. and Chopin, M.-C. (1991) Phage abortive infection mechanism from Lactococcus lactis subsp. lactis, expression of which is mediated by an iso-ISSI element. Appl. Environ. Microbiol. 57, 3547–3551.PubMedGoogle Scholar
  25. Cocconcelli, P.S., Morelli, L., Vescovo, M. and Bottazzi, V. (1986) Intergeneric protoplast fusion in lactic acid bacteria. FEMS Microbiol. Lett. 35, 211–214.Google Scholar
  26. Connell, H., Lemmon, J. and Tannock, G.W. (1988) Formation and regeneration of protoplasts and spheroplasts of gastrointestinal strains of lactobacilli. Appl. Environ. Microbiol. 54, 1615–1618.PubMedGoogle Scholar
  27. Cosby, M.W., Axelsson, L.T. and Dobrogosz, W.J. (1989) Tn977 transposition in Lactobacillus plantarum using the highly temperature-sensitive plasmid pTVITs as a vector. Plasmid 22, 236–243.PubMedGoogle Scholar
  28. Cosby, W.M., Casas, I.A. and Dobrogosz, W.J. (1988) Formation, regeneration, and transfection of Lactobacillus plantarum protoplasts. Appl. Environ. Microbiol. 54, 2599–2602.PubMedGoogle Scholar
  29. David, S., Simons, G. and De Vos, W.M. (1989) Plasmid transformation by electroporation of Leuconostoc paramesenteroides and its use in molecular cloning. Appl. Environ. Microbiol. 55, 1483–1489.PubMedGoogle Scholar
  30. Davidson, B.E., Powell, I.B. and Hillier, A.J. (1990) Temperate bacteriophages and lysogeny in lactic acid bacteria. FEMS Microbiol. Rev. 87, 79–90.Google Scholar
  31. Davies, F.L. and Gasson, M.J. (1981) Reviews of the progress of dairy science: Genetics of lactic acid bacteria. J. Dairy Res. 48, 363–367.PubMedGoogle Scholar
  32. De Mann, J.C., Rogosa, M. and Sharpe, M.E. (1960) A medium for the cultivation of lactobacilli. J. Appl. Bacteriol, 23, 130–135.Google Scholar
  33. De Vos, W.M. and Davies, F.L. (1984) Plasmid DNA in lactic streptococci: bacteriophage resistance and proteinase plasmids in Streptococcus cremoris SK11. In Third European Congress on Biotechnology, Verlag Chemie, Weisheim 3 201–205.Google Scholar
  34. De Vos, W.M. (1987) Gene cloning and expression in lactic streptococci. FEMS Microbiol. Rev. 46, 281–295.Google Scholar
  35. Dodd, H.M., Horn, N. and Gasson, M.J. (1990) Analysis of the genetic determinant for production of the peptide antibiotic nisin. J. Gen. Microbiol. 136, 555–560.PubMedGoogle Scholar
  36. Dodd, H.M., Horn, N., Hao, Z. and Gasson, M.J. (1992) A lactococcal expression system for engineered nisins. Appl. Environ. Microbiol. 58, 3683–3693.PubMedGoogle Scholar
  37. Dodd, H.M., Horn, N. and Gasson M.J. (1993) Characterization of IS905, a new multi-copy IS element identified in lactococci. Molec. Microbiol. in press.Google Scholar
  38. Donkershoot, J.A. and Thompson, J. (1990) Simultaneous loss of N5-(carboxyethyl) ornithine synthase, nisin production, and sucrose-fermenting ability by Lactococcus lactis K1. J. Bacteriol. 172, 4122–4126.Google Scholar
  39. Dornan, S. and Collins, M.A. (1990) High efficiency electroporation of Lactococcus lactis subsp. lactis LM0230 with plasmid pGB301. Lett. Appl. Microbiol. 11, 62–64.PubMedGoogle Scholar
  40. Duwat, P., Ehrlich, S.D. and Gruss, A. (1992) Use of degenerate primers for polymerase chain reaction cloning and sequencing of the Lactococcus lactis subsp. lactis recA gene. Appl. Environ. Microbiol. 58, 2674–2678.PubMedGoogle Scholar
  41. Eftymiou, C. and Hansen, P.A. (1962) An antigenic analysis of Lactobacillus acidophilus. J. Infect. Dis. 110, 258–267.Google Scholar
  42. Ehrenfeld, E.E., Kessler, R.E. and Clewell, D.B. (1986) Identification of pheromone-induced surface proteins in Streptococcus faecalis and evidence of a role for lipoteichoic acid in formation of mating aggregates. J. Bacteriol., 168, 6–12.PubMedGoogle Scholar
  43. Feirtag, J.M., Petzel, J.P., Pasalodos, E., Baldwin, K.A. and McKay, L.L. (1991) Thermosensitive plasmid replication, temperature-sensitive host growth, and chromosomal plasmid integration conferred by Lactococcus lactis subsp. cremoris lactose plasmids in Lactococcus lactis subsp. lactis. Appl. Environ. Microbiol. 57, 539–548.PubMedGoogle Scholar
  44. Fitzgerald, G.F. and Clewell D.B. (1985) A conjugative transposon (Tn979) in Streptococcus sanguis. Infect. Immun., 47, 415–420.PubMedGoogle Scholar
  45. Fitzgerald, G.F. and Gasson, M.J. (1988) In vivo gene transfer systems and transposons. Biochimie 70, 489–502.PubMedGoogle Scholar
  46. Franke, A. and Clewell, D.B. (1981) Evidence for a chromosome-borne resistance transposon (Tn916) in Streptococcus faecalis that is capable of ‘conjugal’ transfer in the absence of a conjugative plasmid. J. Bacteriol. 145, 494–502.PubMedGoogle Scholar
  47. Galli, D., Lottspeich, F., Wirth, R (1990) Sequence analysis of Enterococcus faecalis aggregation substance encoded by the sex-pheromone plasmid pADl. Mol. Microbiol. 4, 895–904.PubMedGoogle Scholar
  48. Gasson, M.J. (1980) Production, regeneration and fusion of protoplasts in lactic streptococci. FEMS Microbiol. Lett. 9, 99–102.Google Scholar
  49. Gasson, M.J. and Davies, F.L. (1980a) Conjugal transfer of the drug resistance plasmid pAMßl in the lactic streptococci. FEMS Microbiol. Lett. 7, 51–53.Google Scholar
  50. Gasson, M.J. and Davies, F.L. (1980b) High frequency conjugation associated with Streptococcus lactis donor cell aggregation. J. Bacteriol. 143, 1260–1264.PubMedGoogle Scholar
  51. Gasson, M.J. (1983) Plasmid complements of Streptococcus lactis NCDO712 and other lactic streptococci after protoplast-induced curing. J. Bacteriol. 154, 1–9.PubMedGoogle Scholar
  52. Gasson, M.J. (1984) Transfer of sucrose fermenting ability, nisin resistance and nisin production into Streptococcus lactis 712. FEMS Microbiol. Lett. 21, 7–10.Google Scholar
  53. Gasson, M.J. and Davies, F.L. (1984) The genetics of dairy lactic acid bacteria. In: Advances in the Microbiology and Biochemistry of Cheeses and Fermented Milks (Davies, F.L. and Law, B.A., eds), Elsevier Applied Science Publishers, New York, pp. 99–126.Google Scholar
  54. Gasson, M.J., Hill, S.H.A. and Anderson, P.H. (1987) Molecular genetics of metabolic traits in lactic streptococci. In Streptococcal Genetics eds. J. Ferretti and R. Curtiss III. American Society for Microbiology pp. 242–245.Google Scholar
  55. Gasson, M.J. (1990) In vivo genetic systems in lactic acid bacteria. FEMS Microbiol. Rev. 87, 43–60.Google Scholar
  56. Gasson, M.J., Maeda, S., Swindell, S. and Dodd, H.M. (1992) Molecular rearrangement of lactose plasmid DNA associated with high frequency and cell aggregation in Lactococcus lactis 712. Mol. Microbiol. 6, 3213–3223.PubMedGoogle Scholar
  57. Geis, A. (1982) Transfection of protoplasts of Streptococcus lactis subsp. diacetylactis. FEMS Microbiol. Lett. 15, 119–122.Google Scholar
  58. Gennaro, M.L., Kornblum, J. and Novick, R.P. (1987) A site-specific recombination function in Staphylococcus aureus plasmids. J. Bacteriol. 154, 1–9.Google Scholar
  59. Gibson, E.M., Chace, N.M., London, S.B. and London, J. (1979) Transfer of plasmid mediated antibiotic resistance from streptococci to lactobacilli. J. Bacteriol. 137, 614–617.PubMedGoogle Scholar
  60. Gireesh, T., Davidson, B. and Hillier, A.J. (1992) Conjugal transfer in Lactococcus lactis, of a 68-kilobase-pair chromosomal fragment containing the structural gene for the peptide bacteriocin nisin. Appl. Environ. Microbiol. 58, 1670–1676.PubMedGoogle Scholar
  61. Gonzalez, C.J. and Kunka, B.S. (1983) Plasmid transfer in Pediococcus sp.: intergenic and intragenic transfer of pIP501. Appl. Environ. Microbiol. 46, 81–89.PubMedGoogle Scholar
  62. Gonzalez, C.F. and Kunka, B.S. (1985) Transfer of sucrose fermenting ability and nisin production phenotype among lactic streptococci. Appl. Environ. Microbiol. 49, 627–633.PubMedGoogle Scholar
  63. Gruss, A. and Ehrlich, S.D. (1989) The family of highly interrelated single-stranded deoxyribonucleic acid plasmids. Microbiol. Rev. 53, 231–241.PubMedGoogle Scholar
  64. Haandrikman, A.J., van Leeuwen, C, Kok, J., Vos, P., De Vos, W.M. and Venema, G. (1990) Insertion elements on lactococcal proteinase plasmids. Appl. Environ. Microbiol. 56, 1890–1896.PubMedGoogle Scholar
  65. Harlander, S.K. (1987) Transformation of Streptococcus lactis by electroporaton. In: Streptococcal Genetics (ed. J. Ferretti and R. Curtiss), American Society for Microbiology, Washington, D.C., USA. pp 229–233.Google Scholar
  66. Harmon, K.S. and McKay, L.L. (1987) Restriction enzyme analysis of lactose and bacteriocin plasmids from Streptococcus lactis subsp. diacetylactis WM4 and cloning of BcLI fragments coding from bacteriocin production. Appl. Environ. Microbiol. 53, 1171–1174.PubMedGoogle Scholar
  67. Hashiba, H., Takiguchi, R., Iskii, S. and Aoyama, K. (1990) Transformation of Lactobacillus helveticus subsp. jugurti with plasmid pLHR by electroporation. Agric. Biol. Chem. 54, 1537–1541.PubMedGoogle Scholar
  68. Hayes, F., Caplice, E., McSweeney, A., Fitzgerald, G.F. and Daly, C. (1990a) pAMß1-associated mobilization of proteinase plasmids from Lactococcus lactis subsp. lactis UC317 and L. lactis subsp. cremoris UC205. Appl. Environ. Microbiol. 56, 195–201.PubMedGoogle Scholar
  69. Hayes, F., Daly, C. and Fitzgerald, G.F. (1990b) High frequency, site specific recombination between lactococcal and pAMß1 plasmid DNAs. J. Bacteriol. 172, 3485–3489.PubMedGoogle Scholar
  70. Hayes, J., Law, J., Daly, C. and Fitzgerald, G.F. (1992) Integration and excision of plasmid DNA in Lactococcus lactis subsp. lactis. Plasmid 24, 81–89.Google Scholar
  71. Higgins, D.L., Sanozky-Dawes, R.B. and Klaenhammer, T.R. (1988) Restriction and modification activities from Streptococcus lactis ME2 are encoded by a self—transmissible plasmid pTN20, that forms cointegrates during modification of lactose fermenting ability. J. Bacteriol. 170, 3435–3442.PubMedGoogle Scholar
  72. Hill, C., Daly, C. and Fitzgerald, G.F. (1985) Conjugative transfer of the transposon Tn919 to lactic acid bacteria. FEMS Microbiol. Lett. 30, 115–119.Google Scholar
  73. Hill, C., Daly, C. and Fitzgerald, G.F. (1987) Development of high-frequency delivery system for transposon Tn979 in lactic streptococci: random insertion in Streptococcus lactis subsp. Diacetylactis 18–16. Appl. Environ. Microbiol. 53, 74–78.PubMedGoogle Scholar
  74. Hill, C., Daly, C. and Fitzgerald, G.F. (1991) Isolation of chromosomal mutation of Lactococcus lactis subsp. lactis biovar. diacetylactis 18–16 after introduction of Tn979. FEMS Microbiol. Lett. 135–140.Google Scholar
  75. Holo, H. and Nes, I.F. (1989) High—frequency transformation, by electroporation, of Lactococcus lactis subsp. cremoris grown with glycine in osmotically stabilized media. Appl. Environ. Microbiol. 55, 3119–3123.PubMedGoogle Scholar
  76. Horn, N., Swindell, S., Dodd, H.M. and Gasson, M.J. (1991) Nisin biosynthesis genes are encoded by a novel conjugative transposon. Mol. Gen. Genet. 228, 129–135.PubMedGoogle Scholar
  77. Horng, J.S., Polzin, K.M. and McKay, L.L. (1991) Replication and temperature-sensitive maintenance functions of lactose plasmid pSK1 1L from Lactococcus lactis subsp. cremoris. J. Bacteriol. 173, 7573–7581.PubMedGoogle Scholar
  78. Huang, D.C., Novel, M. and Novel, G. (1991) A transposon-like element on the lactose plasmid of Lactococcus lactis subsp. lactis 2270. FEMS Microbiol. Lett. 77, 101–106.Google Scholar
  79. Israelson, H. and Hansen, E.B. (1993) Insertion of transposon Tn917 derivatives into the Lactococcus lactis subsp. lactis chromosome. Appl. Environ. Microbiol. 59, 21–26.Google Scholar
  80. Iwata, M., Mada, M. and Ishiwa, H. (1986) Protoplast fusion of Lactobacillus fermentum. Appl. Environ. Microbiol. 52, 392–393.PubMedGoogle Scholar
  81. Jarvis, A.W. (1988) Conjugal transfer in lactic streptococci of plasmid-encoded insensitivity to prolate and small isometric—headed bacteriophage. Appl. Environ. Microbiol. 54, 777–783.PubMedGoogle Scholar
  82. Johansen, E. and Kibenich, A. (1992) Isolation and characterization of IS 1165 an insertion sequence of Leuconostoc mesenteroids subsp. cremoris and other lactic acid bacteria. Plasmid 27, 200–206.PubMedGoogle Scholar
  83. Kanatani, K., Yoshida, K., Tahara, T., Sakamoto, M. and Oshimura, M. (1990) Intraspecific protoplast fusion of Lactobacillus plantarum. Agric. Biol. Chem. 54, 225–227.PubMedGoogle Scholar
  84. Kempler, G.M., Baldwin, K.A., McKay, L.L., Morris, H.A., Halambeck, S. and Thorsen, G. (1979) Use of genetic alterations to improve Streptococcus lactis C2 as a potential Cheddar cheese starter. J. Dairy Sci. 62, (Suppl. 1) 42.Google Scholar
  85. Kim, W.J., Ray, B. and Johnson, M.C. (1992) Plasmid transfers by conjugation and electroporation in Pediococcus acidilactici. J. Appl. Bacteriol. 72, 201–207.Google Scholar
  86. Klaenhammer, T.R. and McKay, L.L. (1976) Isolation and examination of transducing bacteriophage particles from Streptococcus lactis C2. J. Dairy Sci. 59, 396–404.PubMedGoogle Scholar
  87. Kok, J., van Dijl, J.M., van der Vossen, J.M.B.M. and Venema, G. (1985) Cloning and expression of a Streptococcus cremoris proteinase in Bacillus subtilis and Streptococcus lactis. Appl. Environ. Microbiol. 50, 94–101.PubMedGoogle Scholar
  88. Kondo, J.K. and McKay, L.L. (1982a) Transformation of Streptococcus lactis protoplasts by plasmid DNA. Appl. Environ. Microbiol. 43, 1213–1215.PubMedGoogle Scholar
  89. Kondo, J.K. and McKay, L.L. (1982b) Mutanolysin for improved lysis and rapid protoplast formation in dairy streptococci. J. Dairy Sci. 65, 1428–1431.Google Scholar
  90. Kondo, J.K. and McKay, L.L. (1984) Plasmid transformation of Streptococcus lactis protoplasts: Optimization and use in molecular cloning. Appl. Environ. Microbiol. 48, 252–259.PubMedGoogle Scholar
  91. Lahbib-Mansias, Y., Mata, M. and Ritzenthaler, P. (1988) Molecular taxonomy of Lactobacillus phages. Biochimie 70, 429–435.Google Scholar
  92. Lakshmidevi, G., Davidson, B.E. and Hillier, A.J. (1988) Circular permutation of the genome of a temperate bacteriophage from Streptococcus cremoris BK5. Appl. Environ. Microbiol. 54, 1039–1045.PubMedGoogle Scholar
  93. Langella, P. and Chopin, A. (1987) Evaluation of conjugative gene transfer systems in lactic acid bacteria. FEMS Microbiol. Rev. 46, 6.Google Scholar
  94. Langella, P. and Chopin, A. (1989) Effect of restriction-modification systems on transfer of foreign DNA into Lactococcus lactis subsp. lactis. FEMS Microbiol. Lett. 59, 301–306.Google Scholar
  95. Le Bourgeois, P., Mata, M. and Ritzentnaler, P. (1989) Genome comparison of Lactococcus strains by pulsed—field gel electrophoresis. FEMS Microbiol. Lett. 59, 65–70.Google Scholar
  96. Le Bourgeois, P., Lautier, M., Mata, M. and Ritzenthaler, P. (1992a) New tools for the physical and genetic mapping of Lactococcus strains. Gene 111, 109–114.PubMedGoogle Scholar
  97. Le Bourgeois, P., Lautier, M., Mata, M. and Ritzenthaler, P. (1992b) Physical and genetic map of the chromosome of Lactococcus lactis subsp. lactis IL 1403. J. Bacteriol. 174, 6752–6762.PubMedGoogle Scholar
  98. Leenhouts, K.J., Kok, J. and Venema, G. (1989) Campbell-like integration of heterologous plasmid DNA into the chromosome of Lactococcus lactis subsp. lactis. Appl. Environ. Microbiol. 55, 394–400.PubMedGoogle Scholar
  99. Leenhouts, K.J., Kok J., and Venema, G. (1990) Stability of integrated plasmids in the chromosome of Lactococcus lactis. Appl. Environ. Microbiol. 56, 2726–2735.PubMedGoogle Scholar
  100. Leenhouts, K.J., Gietema, J., Kok, J. and Venema, G. (1991a) Chromosomal stabilization of the proteinase genes in Lactococcus lactis. Appl. Environ. Microbiol. 57, 2568–2575.PubMedGoogle Scholar
  101. Leenhouts, K.J., Kok, J., and Venem, G. (1991b) Replacement recombination in Lactococcus lactis. J. Bacteriol. 173, 4769–4798.Google Scholar
  102. Leenhouts, K.J., Kok, J. and Venema, G. (1991c) Lactococcal plasmid pWV01 as an integration vector for lactococci. Appl. Environ. Microbiol. 57, 2562–2567.PubMedGoogle Scholar
  103. Lee-Wickner, L.-J. and Chassy, B.M. (1984) Production and regeneration of Lactobacillus casei protoplasts. Appl. Environ. Microbiol. 48, 994–1000.PubMedGoogle Scholar
  104. Lin, J.H.-C. and Savage, D.C. (1986) Genetic transformation of rifampicin resistance in Lactobacillus acidophilus. J. Gen. Microbiol. 132, 2107–2111.PubMedGoogle Scholar
  105. Loureiro dos Santos, A.L. and Chopin, A. (1987) Shotgun cloning in Streptococcus lactis. FEMS Microbiol. Lett. 42, 209–212.Google Scholar
  106. Luchansky, J.B., Kleeman, E.G., Raya, R.R. and Klaenhammer, T.R. (1989) Genetic transfer systems for delivery of plasmid DNA to Lactobacillus acidophilus ADH: conjugation, electroporation and transduction. J. Dairy Sci. 72, 1408–1417.PubMedGoogle Scholar
  107. Luchansky, J.B., Muriana, P.M. and Klaenhammer, T.R. (1988) Application of electroporation for transfer of plasmid DNA into Lactobacillus, Leuconostoc, Listeria, Pediococcus, Bacillus, Staphylococcus, Enterococcus and Propionibacterium. Mol. Microbiol. 2, 637–646.PubMedGoogle Scholar
  108. Maeda, S. and Gasson, M.J. (1986) Cloning, expression and location of the Streptococcus lactis gene for phospho ß-D-galactosidase. J. Gen. Microbiol. 132, 331–340.PubMedGoogle Scholar
  109. Maguin, E., Duwat, P., Hege, T., Ehrlich, D. and Gruss, A. (1992) New thermosensitive plasmid for gram-positive bacteria. J. Bacteriol. 174, 5633–5638.PubMedGoogle Scholar
  110. McCarthy, D.M., Lin, J.H.-C, Rinckel, L.A. and Savage, D.C. (1988) Genetic transformation in Lactobacillus sp. strain 100–33 of the capacity to colonize the non-secreting gastric epithelium in mice. Appl. Environ. Microbiol. 54, 416–22.PubMedGoogle Scholar
  111. McIntyre, D.A. and Harlander, S.K. (1989a) Genetic transformation of intact Lactococcus lactis supsp. lactis by high voltage electroporation. Appl. Environ. Microbiol. 55, 604–610.PubMedGoogle Scholar
  112. McIntyre, D.A. and Harlander, S.K. (1989b) Improved electroporation efficiency of intact Lactococcus lactis subsp. lactis cells grown in defined media. Appl. Environ. Microbiol. 55, 2621–2626.PubMedGoogle Scholar
  113. McKay, L.L., Cords, B.R. and Baldwin, K.A. (1973) Transduction of lactose metabolism in Streptococcus lactis C2. J. Bacteriol. 115, 810–815.PubMedGoogle Scholar
  114. McKay, L.L. and Baldwin, K.A. (1974) Simultaneous loss of proteinase- and lactose-utilizing enzyme activities in Streptococcus lactis and reversal of loss by transduction. Appl. Environ. Microbiol. 28, 342–346.Google Scholar
  115. McKay, L.L. and Baldwin, K.A. (1978) Stabilization of lactose metabolism in Streptococcus lactis C2. Appl. Environ. Microbiol. 36, 360–367.PubMedGoogle Scholar
  116. McKay, L.L., Baldwin, K.A. and Efstathiou, J.D. (1976) Transductional evidence for plasmid linkage of lactose metabolism in Streptococcus lactis C2. Appl. Environ. Microbiol. 32, 45–52.PubMedGoogle Scholar
  117. McKay, L.L., Baldwin, K.A. and Walsh, P.M. (1980) Conjugal transfer of genetic information in group N streptococci. Appl. Environ. Microbiol. 40, 84–91.PubMedGoogle Scholar
  118. Mercenier, A. and Chassy, B.M. (1988) Strategies for the development of bacterial transformation systems. Biochimie 70, 503–517.PubMedGoogle Scholar
  119. Mercenier, A. and Lemoine, Y. (1989) Genetics of Streptococcus thermophilus: A Review. J. Dairy Sci. 72, 3444–3454.Google Scholar
  120. Mercenier, A., Robert, C., Romero, D.A., Costellino, I., Slos, P. and Lemoine, Y. (1988) Development of an efficient spheroplast transformation procedure for S. thermophilics: the use of transfection to define a regeneration medium. Biochimie 70, 567–577.PubMedGoogle Scholar
  121. Mercenier, A., Slos, P., Fallen, M. and Lecocq, J.P. (1988) Plasmid transduction in Streptococcus thermophilus. Mol. Gen. Genet. 212, 386–389.PubMedGoogle Scholar
  122. Moller-Madsen, A.A. and Jensen, H. (1962) Transformation of Streptococcus lactis. In: Contributions to the XVIth International Dairy Congress, Copenhagen, Vol.B 255.Google Scholar
  123. Molskness, T.A., Sandine, W.E. and Elliker, L.R. (1974) Characterization of Lac+ transductants of Streptococcus lactis. Appl. Environ. Microbiol. 28, 753–758.Google Scholar
  124. Morelli, L., Cocconcelli, P.S., Bottazzi, V., Damiani, G., Ferretti, L. and Sgaramella, V. (1987) Lactobacillus protoplast transformation. Plasmid 17, 73–75.PubMedGoogle Scholar
  125. Murphy, E. (1989) Transposable elements in Gram-positive bacteria. In: Mobile DNA (eds Berg, D.E., and Howe, M.M.) American Society for Microbiology, Washington, D.C., p.269–288.Google Scholar
  126. Neumann, E., Schaefer-Ridder, M., Wang, Y. and Hofschneider, P. (1982) Gene transfer into mouse myeloma cells by electroporation in high electric fields. EMBO J. 1, 841–845.PubMedGoogle Scholar
  127. Neve, H., Geis, A. and Teuber, M. (1984) Conjugal transfer and characterization of bacteriocin Plasmids in group N (lactic acid) streptococci. J. Bacteriol. 157, 833–838.PubMedGoogle Scholar
  128. Novel, M., Huan, X.F. and Novel, G. (1990) Cloning of a chromosomal fragment from Lactococcus lactis subsp. lactis partially complementing Escherichia coli recA functions. FEMS. Microbiol. Lett. 12, 309–314.Google Scholar
  129. Okamoto, T., Fujita, Y. and Irie, R. (1983) Fusion of protoplasts of Streptococcus lactis. Agric. Biol. Chem. 47, 2675–2676.Google Scholar
  130. Okamoto, T., Fujita, Y. and Irie, R. (1985) Interspecific protoplast fusion between Streptococcus cremoris and Streptococcus lactis. Agric. Biol. Chem. 49, 1371–1376.Google Scholar
  131. Otts, D.R. and Day, D.F. (1987) Optimization of protoplast formation and regeneration in Leuconostoc mesenteroides. Appl. Environ. Microbiol. 53, 1694–1695.PubMedGoogle Scholar
  132. Petzel, J. and McKay, L.L. (1992) Molecular characterization of the integration of the lactose plasmid from Lactococcus lactis subsp. cremoris SK1 1 into the chromosome of L. lactis subsp. lactis. Appl. Environ. Microbiol. 58, 125–131.PubMedGoogle Scholar
  133. Polzin, K.A. and Shimizu-Kadota, M. (1987) Identification of a new insertion element similar to gram-negative IS26, on the lactose plasmid of Streptococcus lactis ML3. J. Bacteriol. 169, 5481–5488.PubMedGoogle Scholar
  134. Polzin, K.M. and McKay, L.L. (1991) Identification, DNA sequence, distribution of IS98I, a new high-copy-number insertion sequence in lactococci. Appl. Environ. Microbiol. 57, 734–743.PubMedGoogle Scholar
  135. Polzin, K.M. and McKay, L.L. (1992) Development of a lactococcal integration vector by using IS98I and a temperature-sensitive lactococcal replication region. Appl. Environ. Microbiol. 58, 476–184.PubMedGoogle Scholar
  136. Posno, M., Leer, R.J., van Luijk, N., van Giezen, M.J.F., Hewelmans, P.T.H.M., Lokman, B.C. and Pouwels, P.H. (1991) Incompatibility of Lactobacillus vectors with replicons derived from small cryptic Lactobacillus plasmids and segregational instability of the introduced vectors. Appl. Environ. Microbiol. 57, 1822–1828.PubMedGoogle Scholar
  137. Powell, I.B., Achen, M.G., Hillier, A. and Davidson, B.E. (1988) A simple and rapid method for genetic transformation of lactic streptococci by electroporation. Appl. Environ. Microbiol. 54, 655–660.PubMedGoogle Scholar
  138. Pucci, M.J., Monteschio, M.E. and Vedamutha, E.R. (1987) Conjugal transfer in Leuconostoc spp: intergeneric and intrageneric transfer of plasmid-encoded antibiotic resistance determinants. FEMS Microbiol. Lett. 46, 7.Google Scholar
  139. Rauch, P.J.G. and De Vos, W.M. (1992) Characterization of the novel nisin-sucrose conjugative transposon Tn5276 and its insertion in Lactococcus lactis. J. Bacteriol. 174, 1280–1287.PubMedGoogle Scholar
  140. Raya, R.R. and Klaenhammer, T.R. (1992) High-frequency plasmid transduction by Lactobacillus gasseri bacteriophage Øadh. Appl. Environ. Microbiol. 58, 187–193.PubMedGoogle Scholar
  141. Raya, R.R., Kleeman, E.G., Luchansky, J.B. and Klaenhammer, T.R. (1989) Characterization of the temperate bacteriophage Øadh and plasmid transduction in Lactobacillus acidophilus ADH. Appl. Environ. Microbiol. 55, 2206–2213.PubMedGoogle Scholar
  142. Renault, P.P. and Heslot, H. (1987) Selection of Streptococcus lactis mutants defective in malolactic fermentation. Appl. Environ. Microbiol. 53, 320–324.PubMedGoogle Scholar
  143. Reniero, R., Cocconcelli, P., Bottazzi V. and Morelli, L. (1992) High frequency of conjugation in Lactobacillus mediated by an aggregation-promoting factor. J. Gen. Microbiol. 138, 763–768.Google Scholar
  144. Romero, A., Slos, P., Castellina, R.L., Castelinna, I. and Mercenier, A. (1987) Conjugative mobilization as an alternative vector delivery system for lactic streptococci. Appl. Environ. Microbiol. 53, 2405–2413.PubMedGoogle Scholar
  145. Romero, D.A. and Klaenhammer, T.R. (1990) Characterization of insertion sequence 15946, an iso-ISSI element, isolated from the conjugative lactococcal plasmid pTR2030. J. Bacteriol. 172, 4151–4160.PubMedGoogle Scholar
  146. Romero, D.A. and Klaenhammer, T.R. (1991) Construction of an IS946-based composite transposon in Lactococcus lactis subsp. lactis. J. Bacteriol. 173, 7599–7606.PubMedGoogle Scholar
  147. Romero, D.A. and Klaenhammer, T.R. (1992) IS946-mediated integration of heterologous DNA into the genome of Lactococcus lactis subsp. lactis. Appl. Environ. Microbiol. 58, 699–702.PubMedGoogle Scholar
  148. Salama, M., Sandine, W.E. and Giovannoni, S. (1991) Development and application of oligonucleotide probes for identification of Lactococcus lactis subsp. cremoris. Appl. Environ. Microbiol. 57, 1313–1318.PubMedGoogle Scholar
  149. Sanders, M.E. and Nicholson, M.A. (1987) A method for genetic transformation of non-protoplasted Streptococcus lactis. Appl. Environ. Microbiol. 53, 1730–1736.PubMedGoogle Scholar
  150. Sandine, W.E., Elliker, P.R., Allen, L.K. and Brown, W.C. (1962) Genetic exchange and variability in lactic streptococcus starter organisms. J. Dairy Sci. 45, 1266–1271.Google Scholar
  151. Schäfer, A., Jahns, A., Geis, A. and Teuber, M. (1991) Distribution of the IS elements ISSI and IS904 in lactococci. FEMS Microbiol. Lett. 80, 311–318.Google Scholar
  152. Scheirlinck, T., Manillon, J., Joos, H., Dhaese, P. and Michiels, F. (1989) Integration and expression of αamylase and endoglucanase genes in the Lactobacillus plantarum chromosome. Appl. Environ. Microbiol. 55, 2130–2137.PubMedGoogle Scholar
  153. Scherwitz, K.M., Baldwin, K.A. and McKay, L.L. (1983) Plasmid linkage of a bacteriocin-like substance in Streptococcus lactis. subsp. diacetylactis strain WM4: transferability to Streptococcus lactis. Appl. Environ. Microbiol. 45, 1506–1512.PubMedGoogle Scholar
  154. Sechaud, L., Cluzel, P.-J., Rousseau, M., Baumgartner, A. and Accolas, J.-P. (1988) Bacteriophages of lactobacilli. Biochimie 70, 401–410.PubMedGoogle Scholar
  155. Shimizu-Kadota, M. and Kudo, S. (1984) Liposome-mediated transfection of Lactobacillus casei spheroplasts. Agric. Biol. Chem. 48, 1105–1107.Google Scholar
  156. Shimizu-Kadota, M., Kirki, M., Hirokawa, H. and Tsuchida, N., (1985) ISLI: a new transposable element in Lactobacillus casei. Mol. Gen. Genet. 200, 193–198.PubMedGoogle Scholar
  157. Shimuzu-Kadota, M., Flickinger, J.L. and Chassy, B.M. (1988) Evidence that Lactobacillus casei insertion element ISLI has a narrow host range. J. Bacteriol. 170, 4976-1978.Google Scholar
  158. Shivarova, N., Forster, W., Jacob, H.-E. and Grigorova, R. (1983) Microbiological implications of electric field effects. VII. Stimulation of plasmid transformation of Bacillus cereus protoplasts by electric field pulses. Z. Allg. Mikrobiol. 23, 595–599.Google Scholar
  159. Shrago, A.W., Chassy, B.M. and Dobrgosym, W.J. (1986) Conjugal plasmid transfer (pAMß1) in Lactobacillus plantarum. Appl. Environ. Microbiol. 52, 574–576.PubMedGoogle Scholar
  160. Simon, D., Rouault, A. and Chopin, M.-C. (1985) Protoplast transformation of group N streptococci with cryptic plasmids. FEMS Microbiol. Lett. 26, 239–241.Google Scholar
  161. Simon, D., Rouault, A. and Chopin, M.-C. (1986) High-efficiency transformation of Streptococcus lactis protoplasts by plasmid DNA. Appl. Environ. Microbiol. 52, 394–395.PubMedGoogle Scholar
  162. Smith, M.D. and Clewell, D.B. (1984) Return of Streptococcus faecalis DNA cloned in Escherichia coli to its original host via transformation of Streptococcus sanguis followed by conjugative mobilization. J. Bacteriol. 160, 1109–1114.PubMedGoogle Scholar
  163. Snook, R.J., McKay, L.L. and Ahlstrand, G.G. (1981) Transduction of lactose metabolism by Streptococcus cremoris C3 temperate phage. Appl. Environ. Microbiol. 42, 897–903.PubMedGoogle Scholar
  164. Somkuti, G.A. and Steinberg, D.H. (1988) Genetic transformation of Streptococcus thermophilus by electroporation. Biochimie 70, 579–585.PubMedGoogle Scholar
  165. Steele, J.L. and McKay, L.L. (1986) Partial characterization of the genetic basis for sucrose metabolism and nisin production in Streptococcus lactis. Appl. Environ. Microbiol. 51, 57–64.PubMedGoogle Scholar
  166. Steele, J.L. and McKay, L.L. (1989) Conjugal transfer of genetic material by Lactococcus lactis subsp. lactis 110067. Plasmid 22, 32-43.PubMedGoogle Scholar
  167. Steele, J.L., Polzin, K.M. and McKay L.L. (1989) Characterization of the genetic element coding for lactose metabolism in Lactococcus lactis subsp. lactis KP3. Plasmid 22, 44–51.PubMedGoogle Scholar
  168. Swindell, S., Underwood, H.M. and Gasson, M.J. (1993) Construction and analysis of a plasmid-free L. lactis subsp. lactis strain carrying chromosomally integrated lactose genes. J. Gen. Microbiol. (in press)Google Scholar
  169. Tanaskanen, E.L., Tulloch, D.L., Hillier, A.J. and Davidson, B.E. (1990) Pulsed-field gel electrophoresis of SmaI digests of lactococcal genomic DNA, a novel method of strain identification. Appl. Environ. Microbiol. 56, 3105–3111.Google Scholar
  170. Terzaghi, B.E. and Sandine, W.E. (1975) Improved medium for lactic streptococci and their bacteriophages. Appl. Microbiol. 29, 807–813.PubMedGoogle Scholar
  171. Thompson, J., Nguyen, N.G., Sackett, D.L. and Donkershoot, J.A. (1991) Transposon-encoded sucrose metabolism in Lactococcus lactis. J. Biol. Chem. 266, 14573–14579.PubMedGoogle Scholar
  172. Tohyama, K., Sakurai, T. and Arai, H. (1971) Transduction by temperate phage PLS-1 in Lactobacillus salivarius. Jpn. J. Bacteriol. 26, 482–487.Google Scholar
  173. Trautwetter, A., Ritzenthaler, P., Alatossava, T. and Mata-Gilsinger, M. (1986) Physical and genetic characterization of the genome of Lactobacillus lactis bacteriophage LL–H. J. Virol. 59, 551–555.PubMedGoogle Scholar
  174. Trieu-Cout, P., Carlier, C., Martin, P. and Courvalin, P. (1987) Plasmid transfer by conjugation from Escherichia coli to gram-positive bacteria. FEMS Microbiol. Lett. 48, 289–294.Google Scholar
  175. Tsai, H.J. and Sandine, W.E. (1987) Conjugal transfer of nisin plasmid genes from Streptococcus lactis 7962 to Leuconostoc dextranicum 181. Appl. Environ. Microbiol. 53, 352–357.PubMedGoogle Scholar
  176. Tulloch, D.L., Finch, L.R., Hillier, A.J. and Davidson, B.E. (1991) Physical map of the chromosome of Lactococcus lactis subsp. lactis DL11 and localization of six putative rRNA operons. J. Bacteriol. 173, 2768–2775.PubMedGoogle Scholar
  177. Van der Lehe, D., van der Vossen, J.M.B.M. and Venema, G. (1988) Effect of plasmid incompatibility on DNA transfer to Streptococcus cremoris. Appl. Environ. Microbiol. 54, 865–871.Google Scholar
  178. Van der Lelie, D., Wörten, H.A.B., Bron, S., Oskam, L. and Venema, G. (1990) Conjugal mobilization of streptococcal plasmid pMV158 between strains of Lactococcus lactis subsp. lactis. J. Bacteriol. 172, 47–52.PubMedGoogle Scholar
  179. Van der Lelie, D., Chavarri, F., Venema, G. and Gasson, M.J. (1991) Identification of a new genetic determinant for cell aggregation associated with lactose plasmid transfer in Lactococcus lactis. Appl. Environ. Microbiol. 57, 201–206.PubMedGoogle Scholar
  180. Van der Vossen, J.M.B.M., Kok, J., Van der Lelie, D. and Venema, G. (1988) Liposome-enhanced transformation of Streptococcus lactis and plasmid transfer by intergeneric protoplast fusion of Streptococcus lactis and Bacillus subtilis. FEMS Microbiol. Lett. 49, 323–329.Google Scholar
  181. Vescovo, M., Morelli, L., Bottazzi, A. and Gasson, M.J. (1983) Conjugal transfer of broad host range plasmid pAMß1 into enteric species of lactic acid bacteria. Appl. Environ. Microbiol. 46, 753–755.PubMedGoogle Scholar
  182. Vescovo, M., Morelli, L., Cocconcelli, P.S. and Bottazzi, V. (1984) Protoplast formation, regeneration and plasmid curing in Lactobacillus reuteri. FEMS Microbiol. Lett. 23, 333–334.Google Scholar
  183. Von Wright, A., Taimisto, A.M. and Sivela, S. (1985) Effect of Ca2+ ions on plasmid transformation of Streptococcus lactis protoplasts. Appl. Environ. Microbiol. 50, 1100–1102.Google Scholar
  184. Walsh, P.M. and McKay L.L. (1981) Recombinant plasmids associated with cell aggregation and high frequency conjugation of Streptococcus lactis ML3. J. Bacteriol. 146, 937–944.PubMedGoogle Scholar
  185. Walsh, P.M. and McKay, L.L. (1982) Restriction endonuclease analysis of the lactose plasmid in Streptococcus lactis ML3 and two recombinant lactose plasmids. Appl. Environ. Microbiol. 43, 1006–1010.PubMedGoogle Scholar
  186. Ward, L.J.H. and Jarvis, A.W. (1991) Rapid electroporation-mediated plasmid transfer between Lactococcus lactis and Escherichia coli without the need for plasmid preparation. Lett. Appl. Microbiol. 13, 278–280.Google Scholar
  187. Watanabe, K., Hayashida, M., Nakashima, Y. and Hayashi, S. (1987) Preparation and regeneration of bacteriophage PL-1 enzyme-induced Lactobacillus casei protoplasts. Appl. Environ. Microbiol. 53, 2686–2688.PubMedGoogle Scholar
  188. West, C.A., and Warner, P.J. (1985) Plasmid profiles and transfer of plasmid-encoded antibiotic resistance in Lactobacillus plantarum. Appl. Environ. Microbiol. 50, 1319–1321.PubMedGoogle Scholar
  189. Woskow, S.A. and Kondo, J.K. (1987) Effect of proteolytic enzymes on transfection and transformation of Streptococcus lactis protoplasts. Appl. Environ. Microbiol. 53, 2583–2587.PubMedGoogle Scholar
  190. Wyckoff, H.A., Sandine, W.E. and Kondo, J.K. (1991) Transformation of dairy Leuconostoc using plasmid vectors from Bacillus, Escherichia, and Lactococcus hosts. J. Dairy Sci. 74, 1454–1460.Google Scholar
  191. Youngman, P., Juber, P., Perkins, J.B., Sondman, K., Igo, M. and Lovick, R. (1985) New ways to study developmental genes in spore-forming bacteria. Science 228, 285–291.PubMedGoogle Scholar
  192. Youngman, P.J. (1987) Plasmid vectors for recovering and exploiting Tn917 transpositions in Bacillus and other gram positive bacteria. In Plasmids: A Practical Approach (Hardy, K.G. ed), pp. 79–103. IRL Press, Washington D.C., U.S.A.Google Scholar
  193. Zinder, N.D. and Lederberg, J. (1952) Genetic exchange in Salmonella. J. Bacteriol. 64, 679–699.PubMedGoogle Scholar
  194. Zink, A., Klein, J.R. and Plapp, R. (1991) Transformation of Lactobacillus delbruckii ssp. lactis by electroporation and cloning of origins of replication by use of a positive selection vector. FEMS Microbiol. Lett. 78, 207–212.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1994

Authors and Affiliations

  • M. J. Gasson
  • G. F. Fitzgerald

There are no affiliations available

Personalised recommendations