Skip to main content

Part of the book series: Telecommunications Technology and Applications Series ((TTAP))

  • 167 Accesses

Abstract

Optical sources for coherent detection utilize lasers. There are several types of laser such as solid state laser, gas laser, and laser diode. Laser diodes are the most promising for practical transmission systems because of their compactness and reliability. However, the main problem is spectral linewidth (determined by phase noise). The spectral linewidth of oscillators for a radio communication system is less than 1 Hz. Therefore, the spectral linewidth of an oscillator is not an important factor. However, Fabry-Perot laser diodes oscillate in several longitudinal modes. The multiple longitudinal mode oscillation can be reduced by distributed feedback (DFB) or distributed Bragg reflector (DBR) laser diode structures. These laser diodes oscillate in only one longitudinal mode but the longitudinal mode has the spectral linewidth resulting from phase noise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agrawal, G. P. (1989) Nonlinear Fiber Optics, Academic Press, London.

    Google Scholar 

  • Ainsle, B. J., Beales, K. J., Cooper, D. M, Day, C. R. and Rush, J. D. (1982) Monomode fiber with ultra-low loss and minimum dispersion at 1.55 m, Electronics Letters, 18, pp. 842–844.

    Article  Google Scholar 

  • Anderkson, P. A. (1991) Picosecond optical sampling using four-wave mixing in fiber, Electronics Letters, 27, pp. 1440–1441.

    Article  Google Scholar 

  • Anderkson, P. A., Olsson, N. A., Simpson, J. R., Tanbun-Ek, T., Rogan, R. A. and Haner, M. (1991) 16 Gbit/s all optical demultiplexing using four-wave mixing, Electronics Letters, 27, pp. 922–924.

    Article  Google Scholar 

  • Aoki, Y., Tajima, K. and Mito, I. (1988) Input power limits of single-mode optical fibers due to stimulated Brillouin scattering in optical communication systems, Journal Lightwave Technology, 6, pp. 710–719.

    Article  Google Scholar 

  • Azuma, Y., Shibata, N., Horiguchi, T. and Tateda, M. (1988) Wavelength dependence of Brillouin-gain spectra for single-mode optical fibers, Electronics Letters, 24, pp. 251–252.

    Article  Google Scholar 

  • Bergano, N., Poole, C. D. and Wagner, R. E. (1987) Investigation of polarization dispersion in long lengths of single-mode fiber using multilongitudinal mode lasers, Journal Lightwave Technology, LT-5, pp. 1618–1622.

    Article  Google Scholar 

  • Bhagavatula, V. A., Spotz, M. S. and Love, W. F. (1984) Dispersion-shifted segmented-core single-mode fibers, Optics Letters, 9, pp. 186–188.

    Article  Google Scholar 

  • Bolle, A., Grosso, G. and Daino, B. (1989) Brillouin gain curve dependence on frequency spectrum of PSK-modulated signals, Electronics Letters, 25, pp. 2–3.

    Article  Google Scholar 

  • Chraplyvy, A. R. (1984) Optical power limits in multichannel wavelength-division-multiplexed systems due to stimulated Raman scattering, Electronics Letters, 20, pp. 58–59.

    Article  Google Scholar 

  • Chraplyvy, A. R. (1990) Limitations on lightwave communications imposed by optical-fiber nonlinearities, Journal Lightwave Technology, 8, pp. 1548–1557.

    Article  Google Scholar 

  • Chraplyvy, A. R. and Henry, P. S. (1983) Performance degradation due to stimulated Raman scattering in wavelength-division-multiplexed optical fibre systems, Electronics Letters, 19, pp. 641–642.

    Article  Google Scholar 

  • Chraplyvy, A. R. and Stone, J. (1984) Measurement of crossphase modulation in coherent wavelength-division multiplexing using injection lasers, Electronics Letters, 20, pp. 996–997.

    Article  Google Scholar 

  • Cimini, L. J. (1988) Polarization-insensitive coherent lightwave system using wide-deviation FSK and data-induced polarization switching, Electronics Letters, 24/6, pp. 358–360.

    Article  Google Scholar 

  • Cohen, L. G. (1985) Comparison of single-mode fiber dispersion measurement techniques, Journal Lightwave Technology, LT-3, pp. 958–966.

    Article  Google Scholar 

  • Cohen, L. G. and Lin, C. (1978) Universal fiber-optic (UFO) measurement system based on a near-IR fiber Raman laser, IEEE Journal Quantum Electronics, QE-14, pp. 855–859.

    Article  Google Scholar 

  • Cotter, D. (1983) Stimulated Brillouin scattering in monomode optical fiber, Journal Optical Communications, 4, pp. 10–19.

    Google Scholar 

  • Daikoku, K. and Sugimura, A. (1978) Direct measurement of wavelength dispersion in optical fibers — difference method, Electronics Letters, 14, pp. 149–151.

    Article  Google Scholar 

  • Davis, A. W., Pettitt, M. J., King, J. P. and Wright, S. (1987) Phase diversity techniques for coherent optical receivers, Journal Lightwave Technology, LT-5/4, pp. 561–572.

    Article  Google Scholar 

  • Elrafaie, A. F., Wagner, R. E., Atlas, D. A. and Daut, D. G. (1988) Chromatic dispersion limitations in coherent lightwave transmission systems, Journal Lightwave Technology, 6/5, pp. 704–709.

    Article  Google Scholar 

  • Glance, B. S. (1986) An optical heterodyne mixer providing image-frequency rejection, IEEE Journal of Lightwave Technology, LT-4/11, pp. 1722–1725.

    Article  Google Scholar 

  • Gloge, D. (1971) Dispersion in weakly guiding fibers, Applied Optical, 10, pp. 2442–2445.

    Article  Google Scholar 

  • Heiman, D., Hamilton, D. S. and Hellwarth, R. W. (1979) Brillouin scattering measurements on optical glasses, Physical Review, B19, pp. 6583–6592.

    Google Scholar 

  • Henry, C. H. (1982) Theory of the linewidth of semiconductor lasers, IEEE Journal Quantum Electronics, QE-18/2, pp. 259–264.

    Article  Google Scholar 

  • Hill, K. O., Johnson, D. C., Kawasaki, B. S. and MacDonald, R. I. (1978) CW three-wave mixing in single-mode opticals fibers, Journal Applied Physics, 49, pp. 5098–5106.

    Article  Google Scholar 

  • Hosaka, T., Okamoto, K., Miya, T., Sasaki, Y. and Edahiro, T. (1981) Low-loss singlepolarisation fibers with asymmetrical strain birefringence, Electronics Letters, 17, pp. 530–531.

    Article  Google Scholar 

  • Hussey, C. D. and Pask, C. (1982) Theory of the profile-moments description of single-mode fibers, IEE Proceedings, 129, PT-H, pp. 123–134.

    Article  Google Scholar 

  • Imai, T. (1991) Sensitivity degradation in polarization diversity receivers for lightwave systems, Journal Lightwave Technology, 9, pp. 650–658.

    Article  Google Scholar 

  • Imai, T. and Matsumoto, T. (1988) Polarization fluctuation in a single-mode optical fiber, Journal Lightwave Technology, LT-6/9, pp. 1366–1375.

    Article  Google Scholar 

  • Imai, T., Nosu, K. and Yamaguchi, E. (1985) Optical polarization control utilizing an optical heterodyne detection scheme, Electronics Letters, 21/2, pp. 52–53.

    Article  Google Scholar 

  • Inoue, K. and Toba, H. (1992) Wavelength conversion experiment using fiber four-wave mixing, IEEE Photonics Technology Letters, 4, pp. 69–72.

    Article  Google Scholar 

  • Ippen, E. P. and Stolen, R. H. (1972) Stimulated Brillouin scattering in optical fibers, Applied Physics Letters, 21, pp. 539–541.

    Article  Google Scholar 

  • Ishida, O., Toba, H. and Tohmori, Y. (1989) Pure frequency modulation of a multielectrode distributed-Bragg-reflector (DBR) laser diode, IEEE Photonics Technology Letters, 1/7, pp. 156–158.

    Article  Google Scholar 

  • Iwashita, K. and Matsumoto, T. (1987) Modulation and detection characteristics of optical continuous phase FSK transmission systems, Journal Lightwave Technology, LT-5/4, pp. 452–460.

    Article  Google Scholar 

  • Iwashita, K. and Norimatsu, S. (1991) Cross-phase modulation influence on a two channel optical PSK homodyne transmission system. ECOC’91, pp. 661–664.

    Google Scholar 

  • Iwashita, K. and Takachio, N. (1988) Compensation of 202 km single-mode fibre chromatic dispersion in 4 Gb/s optical CPFSK transmission experiment, Electronics Letters, 24, pp. 759–760.

    Article  Google Scholar 

  • Iwashita, K. and Takachio, N. (1989) Experimental evaluation of coherent dispersion distortion in optical CPFSK transmission systems, Journal Lightwave Technology, 7/10, pp. 1484–1487.

    Article  Google Scholar 

  • Iwashita, K. and Takachio, N. (1990) Chromatic dispersion compensation in coherent optical communications. Journal Lightwave Technology, 8(3), pp. 367–375.

    Article  Google Scholar 

  • Iwashita, K., Kano, H., Matsumoto, T, and Sasaki, Y. (1986) FSK transmission experiment using 10.5 km polarization-maintaining fibre, Electronics Letters, 22/4, pp. 214–215.

    Article  Google Scholar 

  • Jen, C. K., Oliveira, J. E. B., Goto, N. and Abe, K. (1988) Role of guided acoustic wave properties in single-mode optical fibre design, Electronics Letters, 24, pp. 1419–1420.

    Article  Google Scholar 

  • Jen, C. K., Safaai-Jazi, A. and Farnell, G. W. (1986) Analysis of weakly guiding fiber acoustic waveguides, IEEE Transactions Ultrasonics, Ferroelectric Frequency Contr., UFFC-33, pp. 634–643.

    Google Scholar 

  • Kahn, J. M. (1990) BPSK homodyne detection experiment using balanced optical phaselocked loop with quantized feedback, IEEE Photonics Technology Letters, 2/11, pp. 840–843.

    Article  Google Scholar 

  • Kaminow, I. P. (1981) Polarization in optical fibers, IEEE Journal Quantum Electronics, QE-17, pp. 15–22.

    Article  Google Scholar 

  • Katsuyama, T., Matsumura, M. and Suganuma, T. (1981) Low-loss single-polarization fibres, Electronics Letters, 17, pp. 473–474.

    Article  Google Scholar 

  • Kawakami, S. and Ikeda, M. (1978) Transmission characteristics of a two mode optical waveguide, IEEE Journal Quantum Electronics, QE-14, pp. 608–614.

    Article  Google Scholar 

  • Kawano, K., Kitoh, T., Mitomi, O., Nozawa, T. and Jumonji, H. (1989) A wide-band and low-driving-power phase modulator employing a Ti:LiNbO3 optical waveguide at 1.5 mm wavelength, IEEE Photonics Technology Letters, 1/2, pp. 33–34.

    Article  Google Scholar 

  • Kazovsky, L. G. (1985) Decision-driven phase-locked loop for optical homodyne receivers: performance analysis and laser linewidth requirements, Journal Lightwave Technology, LT-3/6, pp. 1238–1247.

    Article  Google Scholar 

  • Kazovsky, L. G. (1986) Balanced phase-locked loops for homodyne receivers: performance analysis, design considerations, and laser linewidth requirements, Journal Lightwave Technology, LT-4/2, pp. 182–195, Feb.

    Article  Google Scholar 

  • Kikuchi, K. (1989) Effect of 1/f-type FM noise on semiconductor laser linewidth residual in high-power limit, IEEE Journal Quantum Electronics, QE-25/4, pp. 684–688.

    Article  Google Scholar 

  • Kimura, T. and Sugimura, A. (1987) Linewidth reduction by coupled phase-shift distributedfeedback lasers, Electronics Letters, 23, pp. 1014–1015.

    Article  Google Scholar 

  • Kobayashi, K. and Mito, I. (1988) Single frequency and tunable laser diodes, Journal Lightwave Technology, 6/11, pp. 1623–1633.

    Article  Google Scholar 

  • Kobayashi, S., Shibata, S., Shibata, N. and Izawa, T. (1981) Wavelength dispersion characteristics of single-mode fibers in low-loss region, IEEE Journal Quantum Electronics, QE-16, pp. 215–225.

    Google Scholar 

  • Lichtman, E., Waarts, R. G. and Friesem, A. A. (1989) Stimulated Brillouin scattering excited by a modulated pump wave in single-mode fibers, Journal Lightwave Technology, 7, pp. 171–174.

    Article  Google Scholar 

  • Linke, R. A. and Gnauck, A. H. (1988) High-capacity coherent lightwave systems, Journal Lightwave Technology, 6, pp. 1750–1769.

    Article  Google Scholar 

  • Maritoson, I. H. (1965) Interspecimen comparison of the refractive index of fused silica, Journal Optical Society America, 55, pp. 1205–1209.

    Article  Google Scholar 

  • Matsui, Y., Kunii, T., Horikawa, H. and Kamijoh, T. (1991) Narrow-linewidth (< 200 kHz) operation of 1.5 μm Butt-jointed multiple-quantum well-distributed Bragg reflector laser, IEEE Photonics Technology Letters, 3/5, pp. 424–426.

    Article  Google Scholar 

  • Matsumoto, T. and Kano, H. (1986) Endlessly rotatable fractional-wave devices for single-mode-fibre optics, Electronics Letters, 22/2, pp. 78–79.

    Article  Google Scholar 

  • Monerie, M., Lamonir, P. and Veunhomme, L. (1980) Polarisation mode dispersion in long single-mode fibres, Electronics Letters, 16, pp. 907–908.

    Article  Google Scholar 

  • Murata, S., Mito, I. and Kobayashi, K. (1987) Spectral characteristics for a 1.5μm DBR laser with frequency-tuning region, IEEE Journal Quantum Electronics, QE-23/6, pp. 835–838.

    Article  Google Scholar 

  • Norimatsu, S. and Iwashita, K. (1991a) Cross-phase modulation influence on a two-channel optical PSK homodyne transmission system, IEEE Photonics Technology Letters, 3, pp. 1142–1144.

    Article  Google Scholar 

  • Norimatsu, S. and Iwashita, K. (1991b) PLL propagation delay-time influence on linewidth requirements of optical PSK homodyne detection, Journal Lightwave Technology, 9/10, pp. 1367–1375.

    Article  Google Scholar 

  • Norimatsu, S., Iwashita, K. and Noguchi, K. (1990) 10Gbit/s optical PSK homodyne transmission experiments using external cavity DFB LDs, Electronics Letters, 26/10. pp. 648–649.

    Article  Google Scholar 

  • Nosu, K. and Iwashita, K. (1988) A consideration on factors affecting future coherent lightwave communications, Journal Lightwave Technology, LT-6/5, pp. 686–694.

    Article  Google Scholar 

  • Ohashi, M., Kuwaki, N., Tanaka, C., Uesugi, N. and Negishi, Y. (1986) Bend-optimized dispersion-shifted step-shaped-index (SS) fibres, Electronics Letters, 21, pp. 1285–1286.

    Article  Google Scholar 

  • Ohashi, M., Kuwaki, N. and Uesugi, N. (1987) Characteristics of dispersion-shifted fibers, Review ECL, 35, pp. 535–539.

    Google Scholar 

  • Ohkawa, N. (1988) Fiber-optic multigigabit GaAs MIC front-end circuit with inductor peaking, Journal Lightwave Technology, 6/11, pp. 1665–1671.

    Article  Google Scholar 

  • Okai, M., Tsuchiya, T., Uomi, K., Chinone, N. and Harada, T. (1990) Corrugation-pitchmodulated MQW-DFB laser with narrow spectral linewidth (170 kHz), IEEE Photonics Technology Letters, 2/8, pp. 529–530.

    Article  Google Scholar 

  • Okamoto, K., Edahiro, T. and Shibata, N. (1982) Polarization properties of singlepolarization fibers, Optics Letters, 7, pp. 569–571.

    Article  Google Scholar 

  • Okamoto, K., Hosaka, T. and Sasaki, Y. (1982) Linear single polarization fibers with zero polarization mode dispersion, IEEE Journal Quantum Electronics, QE-18, pp. 496–503.

    Article  Google Scholar 

  • Okoshi, T. (1985) Polarization-state control schemes for heterodyne or homodyne optical fiber communications, Journal Lightwave Technology, LT-3/6, pp. 1232–1237.

    Article  Google Scholar 

  • Personick, S. D. (1971) Time dispersion in dielectric waveguides, Bell Systems Technical Journal, 50, pp. 843–858.

    MATH  Google Scholar 

  • Personick, S. D. (1973) Receiver design for digital optical communication systems, Part I and II, Bell Systems Technical Journal, 52, pp. 843–886.

    Google Scholar 

  • Petermann, K. (1983) Constrains for fundamental mode spot size for broad-band dispersioncompensated single-mode fibres, Electronics Letters, 19, pp. 712–714.

    Article  Google Scholar 

  • Poole, C. D. (1989) Measurement of polarization-mode dispersion in single-mode fibers with random mode coupling, Optics Letters, 10, pp. 523–525.

    Article  Google Scholar 

  • Priest, R. G. and Giallorenzi, T. G. (1987) Dispersion compensation in coherent fiberoptic communications, Optics Letters, 1/8, pp. 622–624.

    Article  Google Scholar 

  • Ramaswamy, V., Kaminow, I. P. and Kaiser, P. (1978) Single polarization optical fibers: exposed cladding technique, Applied Physics Letters, 33, pp. 814–816.

    Article  Google Scholar 

  • Rashleigh, S. and Ulrich, R. (1978) Polarization mode dispersion in single-mode fibers, Optics Letters, 3, pp. 60–62.

    Article  Google Scholar 

  • Saito, S., Nilsson, O. and Yamamoto, Y. (1985) Frequency modulation noise and linewidth reduction in a semiconductor laser by means of negative frequency feedback semiconductor laser, Applied Physics Letters, 46/1, pp. 3–5, Jan 1.

    Article  Google Scholar 

  • Shen, Y. R. (1984) The Principles of Nonlinear Optics, John Wiley, New York.

    Google Scholar 

  • Shibata, N., Azuma, Y., Tateda, M. and Nakano, Y. (1988) Experimental verification of efficiency of wave generation through four-wave mixing in low-loss dispersion-shifted single-mode optical fibre, Electronics Letters, 24, pp. 1528–1529.

    Article  Google Scholar 

  • Shibata, N., Azuma, Y., Horiguchi, T. and Tateda, M. (1988) Identification of longitudinal acoustic modes guided in the core region of a single-mode optical fiber by Brillouin gain spectra measurements, Optics Letters, 13, pp. 595–597.

    Article  Google Scholar 

  • Shibata, N., Braun, R. P. and Waarts, R. G. (1986) Crosstalk due to three-wave mixing process in a coherent single-mode transmission line, Electronics Letters, 22, pp. 675–677.

    Article  Google Scholar 

  • Shibata, N., Braun, R. P. and Waarts, R. G. (1987) Phase-mismatch dependence of efficiency of wave generation through four-wave mixing in a single-mode optical fiber, IEEE Journal Quantum Electronics, QE-23, pp. 1205–1210.

    Article  Google Scholar 

  • Shibata, N., Nosu, K., Iwashita, K. and Azuma, Y. (1990) Transmission limitations due to fiber nonlinearities in optical FDM systems, IEEE Journal Select. Areas Communications, 8, pp. 1068–1077.

    Article  Google Scholar 

  • Shibata, N., Okamoto, K. and Azuma, Y. (1989) Longitudinal acoustic modes and Brillouin gain spectra for GeO2-doped doped-core single-mode fibers, Journal Optical Society America, B/6, pp. 1167–1174.

    Article  Google Scholar 

  • Shibata, N., Okamoto, K., Suzuki, K. and Ishida, Y. (1983) Polarization-mode properties of elliptical-core fibers and stress-induced birefringent fibers, Journal Optical Society America, 73, pp. 1792–1798.

    Article  Google Scholar 

  • Shibata, N., Tateda, M. and Seika, S. (1982) Polarization mode dispersion measurement in elliptical core single-mode fibers by a spatial technique, IEEE Journal Quantum Electronics, QE-18, pp. 53–58.

    Article  Google Scholar 

  • Shibata, N., Tsubokawa, M. and Seikai, S. (1984) Measurements of polarization mode dispersion by optical heterodyne detection, Electronics Letters, 20, pp. 1055–1057.

    Article  Google Scholar 

  • Shibata, N., Uchida, N., Tateda, M. and Seikai, S. (1982) Normalised frequency dependence of polarisation mode dispersion due to thermal-stress-induced birefringence in an elliptical core single-mode fibre, Electronics Letters, 18, pp. 563–564.

    Article  Google Scholar 

  • Shibata, N., Waarts, R. G. and Braun, R. P. (1987) Brillouin gain spectra for single-mode fibers having pure-silica, GeO2-doped and P2O5-doped cores, Optics Letters, 12, pp. 269–271.

    Article  Google Scholar 

  • Shibutani, M. and Yamazaki, S. (1989) A study on an active square-law combining method for a polarization-diversity coherent optical receiver, IEEE Photonics Technology Letters, 1/7, pp. 182–183.

    Article  Google Scholar 

  • Sinha, N. K. (1978) Normalized dispersion of birefringence of quartz and stress-optical coefficient of fused silica and plate glass, Physics and Chemistry of Glasses, 19, pp. 67–77.

    Google Scholar 

  • Smith, R. G. (1972) Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and Brillouin scattering, Applied Optics, 11, pp. 2489–2494.

    Article  Google Scholar 

  • Stolen, R. H. (1979) Nonlinear properties of optical fibers, in Optical Fiber Telecommunications, Miller, S. E. and Chynoweth, A. G., Eds., Academic Press, New York.

    Google Scholar 

  • Sugie, T. (1991a) Suppression of SBS by discontinuous Brillouin frequency shifted fibre in CPFSK coherent lightwave system with booster amplifier, Electronics Letters, 27, pp. 1231–1232.

    Article  MathSciNet  Google Scholar 

  • Sugie, T. (1991b) Transmission limitations of CPFSK coherent lightwave systems due to stimulated Brillouin scattering in optical fiber, Journal Lightwave Technology, 9, pp. 1145–1155.

    Article  Google Scholar 

  • Sunde, E. D. (1961) Pulse transmission by AM, FM, and PM in the presence of phase distortion, Bell System Technical Journal, 40, p. 353.

    Google Scholar 

  • Takachio, N. and Iwashita, K. (1988) Compensation of fiber chromatic dispersion in optical heterodyne detection, Electronics Letters, 24/2, pp. 108–109.

    Article  Google Scholar 

  • Takachio, N., Iwashita, K., Hata, S., Onadera, K., Katsura, K. and Kikuchi, H. (1990) A 10 Gb/s optical heterodyne detection experiment using a 23 GHz bandwidth balanced receiver, IEEE Transactions Microwave Theory Technology, 38, pp. 1900–1905.

    Article  Google Scholar 

  • Takachio, N., Norimatsu, S. and Iwashita, K. (1992) Optical PSK synchronous heterodyne detection transmission experiment using fiber chromatic dispersion equalisation, IEEE Photon Technology Letters, 4/3, pp. 278–280.

    Article  Google Scholar 

  • Tateda, M., Shibata, N. and Seikai, S. (1981) Interferometric method for chromatic dispersion in a single-mode optical fiber, IEEE Journal Quantum Electronics, QE-17, pp. 404–407.

    Article  Google Scholar 

  • Thomas, P. J., Rowell, N. L., van Driel, H. M. and Stegeman, G. I. (1979) Normal acoustic modes and Brillouin scattering in single-mode optical fiber, Physical Review, B19, pp. 4986–4998.

    Google Scholar 

  • Tkach, R. W., Chraplyvy, A. R. and Derosier, R. M. (1986) Spontaneous Brillouin scattering for single-mode optical fibre characterisation, Electronics Letters, 22, pp. 1011–1013.

    Article  Google Scholar 

  • Tsubokawa, M. and Sasaki, Y. (1988) Limitation of transmission distance and capacity due to polarisation dispersion in a lightwave system, Electronics Letters, 24, pp. 350–352.

    Article  Google Scholar 

  • Uesugi, N., Ikeda, M. and Sasaki, Y. (1981) Maximum single-frequency input power in a long optical fiber determined by stimulated Brillouin scattering, Electronics Letters, 17, pp. 379–380.

    Article  Google Scholar 

  • Ulrich, R. (1979) Polarization stabilization on single-mode fiber, Applied Physics Letters, 35/11, pp. 840–842.

    Article  Google Scholar 

  • Vobian, J. (1990) Chromatic and polarization dispersion measurements of single-mode fibers with a Mach-Zehnder interferometer between 1200 and 1700 nm, Journal Optical Communications, 11, pp. 29–36.

    Article  Google Scholar 

  • Walker, N. G. and Walker, G. R. (1990) Polarization control for coherent communications, Journal Lightwave Technology, 8, pp. 438–458.

    Article  Google Scholar 

  • Winter, J. H. (1989) Equalization in coherent lightwave systems using microwave waveguides, Journal Lightwave Technology, 7, pp. 813–815.

    Article  Google Scholar 

  • Wyatt, R. and Devlin, W. J. (1983) 10kHz 1.5 μm InGaAsP external cavity laser with 55 nm tuning range, Electronics Letters, 19, pp. 110–112.

    Article  Google Scholar 

  • Yamazaki, S., Kimura, K., Shikada, M., Yamaguchi, M. and Mito, I. (1985) Realization of flat FM response by directly modulating a phase tunable DFB laser diode, Electronics Letters, 21/7, pp. 283–285, Mar. 28.

    Article  Google Scholar 

  • Yasaka, H., Fukuda, M. and Ikegami, T. (1988) Current tailoring for lowering linewidth floor, Electronics Letters, 24/12, pp. 760–762.

    Article  Google Scholar 

  • Yoshikuni, Y. and Motosugi, G. (1986) Independent modulation in amplitude and frequency regimes by a multielectrode distributed-feed-back laser, 9th Conference Optical Fiber Communications, Atlanta, GA, Feb. 24-26, paper TuFl.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Sadakuni Shimada

About this chapter

Cite this chapter

Iwashita, K., Shibata, N. (1995). Coherent transmission technologies. In: Shimada, S. (eds) Coherent Lightwave Communications Technology. Telecommunications Technology and Applications Series. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1308-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1308-3_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-412-57940-0

  • Online ISBN: 978-94-011-1308-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics