Skip to main content

Part of the book series: Soviet Advanced Composites Technology Series ((SACTS,volume 2))

Abstract

High thermal shock resistance, fracture toughness, high-temperature strength, optimal tribological characteristics, chemical and erosion stability at a low density - such is a list, far from complete, of properties that should be offered by modern materials to provide serviceability of assemblies and mechanisms under extreme conditions of high temperatures, thermomechanical loads, erosion wear, corrosive environments, etc. An ever-wider application for such operating conditions is found by ceramic materials [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

References

  1. Hilling W. (1987) Strength and toughness of ceramic matrix composites. Annual Review of Materials Science, 17, 341–83.

    Article  Google Scholar 

  2. Berezhnoj A. I. (1976) Glass Ceramics and Photoglass Ceramics, Mashinostroenie, Moscow.

    Google Scholar 

  3. Strnad Z. (1989) Glass-ceramic Materials. Strojizdat, Moscow.

    Google Scholar 

  4. Prewo K. M. (1987) Glass and ceramic matrix composites: present and future. Materials Research Soc., 120, 145–6.

    Article  Google Scholar 

  5. Rutkovskij A. E., Ivashin A. A., Alekseenko I. P. et al. (1990) Technology of structural glass ceramics-based reinforced composites. Abstract of Reports to Moscow Int. Conf. on Composites, Moscow, Part 2, pp. 78–9.

    Google Scholar 

  6. Kohuo Tohree and Nishino Yoshio. (1981) Development of sintered bearings for high speed revolution applications. Mod. Dev. Powder Met., 12 (7), 855–70.

    Google Scholar 

  7. Walton J. and Corbett W. (1965) Metal fibre reinforced ceramics, in Fiber Composite Materials, Metals Park, Ohio.

    Google Scholar 

  8. Frantsevich I. N., Karpinos D. M., Rutkovskij A. E. et al. (1986) Tungsten-and molybdenum-based fibrous materials with oriented structure. Proc. of First All-USSR Conf. on Precipitation-hardened and Fibrous Materials. Kiev, pp. 13–25.

    Google Scholar 

  9. Savitskij E. M. and Burkhanov G. S. Physical Metallurgy of Refractory Metals and Alloys, Nauka, Moscow.

    Google Scholar 

  10. Gross R. (1972) FRG Patent No. 2,103,798. Attrition-, Impact-, and Corrosion-Resistant Material from Glass with Steel Inserts. Publ. 3 Aug.

    Google Scholar 

  11. Donald I. W. and McMillan P. W. (1977) The influence of internal stresses on mechanical behavior of glass-ceramic composites. J. Mater. Sci., 12, 290–8.

    Article  Google Scholar 

  12. Karpinos D. M., Tuchinskij L. I., and Vishnjakov L. R. (1977) New Composite Materials, Vyshcha Shkola, Kiev.

    Google Scholar 

  13. Dalidovich A. S. (1970) Fundamentals of Knitting Theory, Legkaja Industrija, Moscow.

    Google Scholar 

  14. Ivashin A. A., Rutkovskij A. E. and Borshchevskij D. F. (1987) Hot pressing as method for producing technical glass-based reinforced composites, in Manufacturing Technology and Properties of Powder Composites, Penza, PP. 3–7.

    Google Scholar 

  15. Samsonov G. V. and Kovalchenko M. S. (1962) Hot Pressing, Gos. Izd. Tekhn. Literatury, Kiev.

    Google Scholar 

  16. Karpinos D. M., Tuchinskij L. I. et al. (1976) Sintering of two-phase composites with nondeformable inclusions. Poroshkovaja Metallurgija, 7, 29.

    Google Scholar 

  17. Dorofeev J. G. (1972) Dynamic Hot Pressing in Cermet Technology, Metallurgija, Moscow.

    Google Scholar 

  18. Jones W. D. (1960) Fundamental Principles of Powder Metallurgy, Edward Arnold, London.

    Google Scholar 

  19. Tykachinskaja P. D., Budov V. V. and Khodakovskaja R. J. (1990) Effect of reinforcing fiber content on process of fracture of composites, in Abstracts of Reports to Moscow Int. Conf. on Composites, Moscow, Part 2, p. 194.

    Google Scholar 

  20. Cuper G. A. (1974) Micromechanical aspects of fracture, in Composite Materials, vol. 5, Fracture and Fatigue, (ed. Brouton L. I.), Academic Press, New York and London.

    Google Scholar 

  21. Rutkovskij A. E., Aleksenko I. P., Ivashin A. A. et al. (1988) Structure, strength and thermophysical properties of glass ceramics reinforced with continuous inorganic fibers, in Application of Composites in Mechanical Engineering, Minsk, pp. 170–1.

    Google Scholar 

  22. Rutkovskij A. E., Ivashin A. A. and Dzeganovskij V. P. Study of interaction between metallic fibers and glass-ceramic matrix after high-temperature annealings. Poroshkovaja Metallurgija, (in press).

    Google Scholar 

  23. Masahiro Ashizuka, Yoshinori Aimoto and Masahiro Watanabe. (1989) Mechanical properties of SiC whisker reinforced glass ceramic composites. J. Ceram. Soc. Jap., Int. Ed., 97, 789–90.

    Google Scholar 

  24. Antsiferov V. N., Sokolkin Ju. V., Pashkinov A. A. et al. (1990) Titanium-based Fibrous Materials, Nauka, Moscow, pp. 11–14.

    Google Scholar 

  25. Tykachinskaja P. D., Budov V. V., and Khodakovskaja R. J. (1990) Glass sintering and crystallization processes in hot pressing, in Modern Problems of Powder Metallurgy, Ceramics, and Composites, Institute for Materials Science Problems, Ac. Sci. Ukr. SSR, Kiev, pp. 61–4.

    Google Scholar 

  26. Khodakovskaja R. J. (1989) Glass-ceramic materials with reaction-formed structure. Steklo i Keramika, 6, 36–9.

    Google Scholar 

  27. Frolov G. A., Polezhaev J. V., Pasichnyj V. V. and Zakharov F. I. (1981) Investigation of parameters of failure of thermomagnetic materials under nonstationary heating conditions. Inzhenerno-Fizicheskij Zhurnal, 40, 608–14.

    Google Scholar 

  28. Aleksenko I. P., Podsosonyj V. V., Pasichnyj V. V. et al. (1988) Impact of cyclic thermal loads on structure and properties of reinforced glass ceramics, in Application of Composites in Mechanical Engineering, Minsk.

    Google Scholar 

  29. Rutkovskij A. E., Chekhovskij A. A. and Aleksenko I. P. Investigation of chemical stability of reinforced glass ceramics. Poroshkovaja Metallurgija, in press.

    Google Scholar 

  30. Rutkovskij A. E., Ivashin A. A., Artjukhova S. G. and Aleksenko I. P. (1979) Study of impact of reinforced glass ceramic-based structure on its physicomechanical properties, in Real Structure of Inorganic High-Temperature Materials, Pervourlask, p. 291.

    Google Scholar 

  31. Ganz S. N. and Parkhomenko V. D. (1965) Antifriction Chemically Stable Materials in Mechanical Engineering, Mashinostroenie, Moscow.

    Google Scholar 

  32. Khodakovskaja R. J., and Tamm D. (1989) Mullite glass-ceramic materials based on magnesia aluminosilicate glasses-corundum compounds. Proc. of D. I. Mendeleev MKhTI, 157, 67–75.

    Google Scholar 

  33. Levi E. A., Khodakovskaja R. J., Pobedimskaja E. A, and Belov N. V. (1980) Radiographic measurement of microstresses in glass-ceramic materials. Dokl. AN SSSR, 255(3), 572–7.

    Google Scholar 

  34. Levi E. A., Khodakovskaja R. J. and Rudenko L. V. (1989) Radiographic determination of microstress relaxation degree and its relation to strength of glass-ceramic materials. Izv. AN SSSR, Neorg. Mater., 25, 496–501.

    Google Scholar 

  35. Khodakovskaja R. J., Baschenko J. V. and Gertsman A. F. (1987) Effect of glassy phase composition on fine structure of crystals and mechanical properties of MgO-Al2O3-SiO2 system glass ceramics. Proc. of D. I. Mendeleev MKhTI, 146, 117–26.

    Google Scholar 

  36. Rice R. W. (1981) Mechanisms of toughening in ceramic matrix composites. Ceram. Eng. Sci. Proc., 2(7–8), 661–701.

    Article  Google Scholar 

  37. Borom, R. W. and Johnson C. A. (1987) Thermomechanical mismatch in ceramic fibre reinforced glass-ceramic composites. J. Amer. Ceram. Soc., 70 (1), 1–8.

    Article  Google Scholar 

  38. Desmukh U. V., Kanei A., Freiman S. W. and Craumer D. C. (1988) Effect of thermal expansion mismatch on fiber pull-out. Materials Research Soc., 120, 253–8.

    Article  Google Scholar 

Further Reading

  • Karpinos D. M. (ed.) (1985) Composites, Naukova Dumka, Kiev, pp. 212–4.

    Google Scholar 

  • USSR Inventor’s Certificate No. 623, 843. Ceramic Material. Karpinos D. M., Rutkovskij A. E., Kondratjev Ju. V., Ivashin A. A. et al. Publ. in Otkrytija. Izobretenija, 1978, No. 34, p. 71.

    Google Scholar 

  • Rutkovskij A. E., Aleksenko I. P., Chekhovskij A. A., Furman V. V. Plant for Powder Application to Continuous Fibers, in press.

    Google Scholar 

  • Rutkovskij A. E., Chekhovskij A. A., Ivashin A. A. et al. Investigation of corrosion, mechanical, and thermophysical characteristics of reinforced glass ceramics at one-sided cyclic radiant heating. Poroshkovaja Metallurgija,in press.

    Google Scholar 

  • Kulik O. P., Denisenko E. T. and Krot O. I. (1985) High-temperature structural ceramics: manufacture and properties. Preprint No. 2, Institute for Materials Science Problems, Ac. Sci. Ukr. SSR, Kiev.

    Google Scholar 

  • Nazarenko N. D., Juga A. I. et al. (1973) Effect of metallic fillers on friction properties of glass ceramics. Poroshkovaja Metallurgija, 7, 51–4.

    Google Scholar 

  • Nazarenko N. D., Juga A. I., Kolesnichenko L. F. et al. (1980) Investigation of friction properties of glass ceramic-metallic filler composites. Poroshkovaja Metallurgija, 7, 75–89.

    Google Scholar 

  • Catalogue of Engineering Glass Ceramics, (1967) Moscow.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Rutkovskij, A.E., Sarkisov, P.D., Ivashin, A.A., Budov, V.V. (1995). Glass ceramic-based composites. In: Trefilov, V.I. (eds) Ceramic- and Carbon-matrix Composites. Soviet Advanced Composites Technology Series, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1280-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1280-2_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4558-2

  • Online ISBN: 978-94-011-1280-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics