Skip to main content

Hysteresis and energy loss in flexible polyurethane foams

  • Chapter
Low density cellular plastics

Abstract

The behaviour of open cell flexible polyurethane foams in energy management applications, such as automotive seating, where static and dynamic comfort are the main functional attributes, is governed by two material properties: the effective stiffness; and energy lost through hysteresis under the conditions that prevail in use. In most applications the foam is subject to combined stresses (tension, shear and compression) and in some characterization procedures, such as indentation-force-deflection and ball rebound, these conditions prevail. However to elucidate the mechanisms responsible for behaviour a simple deformation regime is normally employed, in particular, simple compression. The imposed static strains may be large (40–70%) which means in practical terms that we are dealing with a highly non-linear static and dynamic mechanical situation. This is manifest by the fact that under high intensity harmonic excitation a flexible foam-based vibration isolating system exhibits behaviour similar to that of classical chaos [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hilyard, N. C. and Collier, P. (1985) Response of a vibration isolator with distributed non-linear stiffness at large excitations, J. Sound Vib., 101(4), 593–7.

    Article  Google Scholar 

  2. Mendelsohn, M. A., Black, G. R., Runk, R. H. and Minier, H. F. (1965) Dependence of physical properties on composition in a series of high load bearing Polyurethane foams. J. Appl. Polym. Sci., 9, 2715–28.

    Article  CAS  Google Scholar 

  3. Nagy, A., Ko, W. L. and Lindholm, U. S. (1974) Mechanical behaviour of foamed materials under dynamic compression. J. Cellular Plast., May/June, 127–33.

    Article  Google Scholar 

  4. Schwaber, D. M. and Mienecke, E. A. (1971) Energy absorption in polymeric foams. II Prediction of impact behaviour from Instron data for foams with rate dependent modulus. J. Appl. Polym. Sci., 15, 2381–93.

    Article  CAS  Google Scholar 

  5. Kane, R. P. (1965) The fatigue of flexible urethane foam. J. Cellular Plast., Jan, 217–22.

    Article  Google Scholar 

  6. Gibson, L. J. and Ashby, M. F. (1988) Cellular Solids: Properties and Structure, Pergamon Press, Ch. 5.

    Google Scholar 

  7. Rusch, K. C. (1969) Load-compression behaviour of flexible foams. J. Appl. Polym. Sci., 13, 2297–311.

    Article  CAS  Google Scholar 

  8. Kreter, P. E. (1985) Polyurethane foam properties as a function of foam density. J. Cellular Plast., Sept/Oct., 306–10.

    Article  Google Scholar 

  9. Cremer, L. and Muller, H. A. (1982) Principles and Applications of Room Acoustics, Vol. 2, Applied Science Publishers, p. 239.

    Google Scholar 

  10. Snowdon, J. C. (1968) Vibration and Shock in Damped Mechanical Systems. John Wiley, New York, Ch 2.

    Google Scholar 

  11. Struik, L. C. E. (1967) Free damped vibrations of linear viscoelastic materials. Rheologica Acta, 6(2), 119–129.

    Article  CAS  Google Scholar 

  12. French, A. P. (1971) Vibrations and Waves, Nelson, p. 66.

    Google Scholar 

  13. Dwyer, F. J. (1976) A review of factors affecting durability characteristics of flexible urethane foams. J. Cellular Plast., March–April, 104–13.

    Article  Google Scholar 

  14. Lee, W. M. (1985) A new approach to humid age compression set study in high resilient molded foams. J. Cellular Plast., Nov–Dec, 417–22.

    Article  Google Scholar 

  15. Armistead, J. P., Wilkes, G. L. and Turner, R. B. (1988) Morphology of water blown flexible poly urethane foams. J. Appl. Polym. Sci., 35, 601–28.

    Article  CAS  Google Scholar 

  16. Moreleand, J. C, Wilkes, G. L. and Turner, R. B. (1991) Segmental orientation behaviour of flexible water-blown polyurethane foams. J. Appl. Polym. Sci., 43, 801–14.

    Article  Google Scholar 

  17. Dzierza, W. (1982) Stress-relaxation properties of segmented polyurethane rubber. J. Appl. Polym. Sci., 27, 1487–99.

    Article  CAS  Google Scholar 

  18. Hilyard, N. C. and Lee, W. L. (1992) Unpublished data.

    Google Scholar 

  19. Jones, R. E. and Fesman, G. (1965) Air flow measurement and its relations to cell structure, physical properties and processibility for flexible urethane foams. J. Cell Plast., 1, 200–16.

    Article  Google Scholar 

  20. Wilson, D., McIntosh, J. D. and Lambert, R. F. (1988) Forchheimer-type nonlinearities for high intensity propagation of pure tones in air-saturated porous media. J. Acoust. Soc. Am., 84(1), 350–9.

    Article  Google Scholar 

  21. Hilyard, N. C. and Collier, P. (1987) A structural model for air flow in flexible PUR foams. Cell. Polymers, 6(6), 9–26.

    CAS  Google Scholar 

  22. Gent, A. N. and Rusch, K. C. (1966a) Viscoelastic behaviour of open cell foams. Rubb. Chem. Tech., 39, 389–96.

    Article  CAS  Google Scholar 

  23. Gent, A. N. and Rusch, K. C. (1966b) Permeability of open cell foamed materials. J. Cell. Plast., 2, 46–51.

    Article  CAS  Google Scholar 

  24. Collier, P. (1985) The Design and Performance of Non-linear Vibration Isolating Materials, PhD Thesis, Sheffield City Polytechnic, Sheffield, UK.

    Google Scholar 

  25. Cummings, A. and Chang, I.-J. (1987) Acoustic propagation in porous media with internal mean flow. J. Sound Vib., 114(3), 565–81.

    Article  Google Scholar 

  26. Kay, J. M. (1963) Fluid Mechanics and Heat Transfer, Cambridge University Press.

    Google Scholar 

  27. Rusch, K. C. (1965) Dynamic Behaviour of Flexible Open-Cell Foams. PhD thesis, University of Akron, U.S.A.

    Google Scholar 

  28. Hilyard, N. C. (1982a, b). Mechanics of Cellular Plastics (Ed. N. C. Hilyard), Applied Science Publishers, London, Ch. 4, Ch. 1.

    Google Scholar 

  29. Lambert, R. F. (1982) The acoustical structure of highly porous open-cell foams. J. Acoust. Soc. Am., 72(3), 879–87.

    Article  Google Scholar 

  30. Cunningham, A. (1987) A structural model of heat transfer through rigid polyurethane foam, in Heat and Mass Transfer (eds J. Bougard and N. H. Afgan), Hemisphere Publishing Corp., pp. 32–43.

    Google Scholar 

  31. Cavender, K. D. (1990) New dynamic flexibility test. 1, in Proceedings of the 33rd Annual Polyurethane Technical/Marketing Conference, Sept. 30–Oct. 3, 282–8.

    Google Scholar 

  32. Courtney, M. H, Charlton, L. J. and Seal, K. (1989) Influence of foam density on automobile seat performance. J. Cellular Pias., 25, 472–85.

    Article  Google Scholar 

  33. Seefried, C. G., Whitman, R. D. and Pollart, D. F. (1974) Influence of polymer structure on high resiliency urethane foams. J. Cellular Plast., 10, 171–80.

    Article  CAS  Google Scholar 

  34. Seefried, C. G., Whitman, R. D. and Pollart, D. F. (1974) Influence of polymer structure on high resiliency urethane foams. J. Cellular Plast., 10, 171–80.

    Article  CAS  Google Scholar 

  35. Hilyard, N. C., Lee, W. L. and Cunningham, A. (1991) Energy dissipation in polyurethane cushion foams and its role in dynamic ride comfort, in Proceedings Cellular Polymers: International Conference. Forum Hotel. London, UK. 20th–22nd March 1991, RAPRA Technology.

    Google Scholar 

  36. Lockett, F. J., Cousins, R. R. and Dawson, D. (1981) Engineering basis for selection and use of crash padding materials. Plastics and Rubber Processing and Applications, 1(1), 25–37.

    Google Scholar 

  37. Jones, R. E., Hersch, P., Stier, G. G. and Dombrow, B. A. (1959) Measuring the resilience of flexible urethane foams. Plastics Technol., 5, 55–9.

    CAS  Google Scholar 

  38. Hartings, J. W. and Hagen, J. H. (1978) Fatigue investigations of urethane seat pads. J. Cellular Plast., March/April, 81–6.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hilyard, N.C. (1994). Hysteresis and energy loss in flexible polyurethane foams. In: Hilyard, N.C., Cunningham, A. (eds) Low density cellular plastics. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1256-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1256-7_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4547-6

  • Online ISBN: 978-94-011-1256-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics