Skip to main content

Abstract

A significant characteristic of polyurethane foams as applied in thermal insulation is their thermal ageing behaviour. The thermal conductivity of a non-encapsulated foam tends to increase with time due to an effusion of the blowing agents and an infusion of air. This causes the gas composition in the foam cells to change with time. As air has a higher thermal conductivity than the blowing agents a thermal ageing occurs. Essentially, the mechanism is that the gases permeate through the cell walls by a diffusion process. As the diffusion for some gas components is rather slow the total ageing process can take many, up to 25 or more, years for a foam panel of 50 mm thickness. However, the diffusion of carbon dioxide outwards is fast (weeks) and the inward diffusion of air can take place within one year. A typical ageing curve showing the behaviour is given in Fig. 6.1. A small initial decrease of the thermal conductivity λ due to outward C02 diffusion followed by a fast increase of thermal conductivity in the first period (air in) and a slower but still important one in the latter stages (CFC-11 out). In the first period (1–10 weeks) a dissolution of the high molecular blowing agent into the plastic matrix can also occur, leading to an increase of λ.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Norton, F. J. (1967) Thermal conductivity and life of polymeric foams. J. Cellular Plastics, 3, 23–36.

    Article  CAS  Google Scholar 

  2. Cuddihy, E. F. and Moacanin, J. (1967) Diffusion of gases in polymeric foams. J. Cellular Plastics, 3, 73–80.

    Article  CAS  Google Scholar 

  3. Norton, F. J. (1982) Diffusion of chlorofluorocarbon gases in polymer films and foams. J. of Cellular Plastics, 18, 300–18.

    Article  CAS  Google Scholar 

  4. Reitz, D. W. (1983) A basic study of gas diffusion in foam insulation. PhD thesis, Dept Mech. Eng., Massachusetts Institute of Technology.

    Google Scholar 

  5. Reitz, D. W., Schuetz, M. A. and Glicksman, L. R. (1984) A basic study of ageing of foam insulation. J. of Cellular Plastics, 20, 104–13.

    Article  CAS  Google Scholar 

  6. Ostrogorsky, A. G., Glicksman, L. R. and Reitz, D. W. (1986) Ageing of polyurethane foams. Int. J. of Heat and Mass Transfer, 29(8), 1169–86.

    Article  CAS  Google Scholar 

  7. de Nazelle, G. M. R., Bart, G. C. J., Dammers, A. J. and Cunningham, A. (1989) A fundamental characterization of the ageing of polyurethane rigid foam, in Proceedings of SPI Int. Workshop on long term thermal performance of cellular plastics, Ontario, Canada, Sept.

    Google Scholar 

  8. Crank, J (1957) The Mathematics of Diffusion, Oxford University Press, Oxford.

    Google Scholar 

  9. Carlslaw, H. S. and Jaeger, J. C. (1978) Conduction of heat in solids, Clarendon Press, Oxford.

    Google Scholar 

  10. Shankland, I. R. (1986) Gas transport in closed-cell foams, in Advances in Foam Ageing (ed. D. A. Brandeth), Carissa Editions, Yorklyn.

    Google Scholar 

  11. Elvira, C. de, Cuesta, F. J. and Lopez, M. N. (1974) The effect of cell size on the thermal conductivity of cellular insulants. IIF-IIR Bulletin, B, 161.

    Google Scholar 

  12. de Nazelle, G. M. R. du Cauzé, Bart, G. C. J. and Dammers, A. J. (1991) A fundamental understanding of the thermal conductivity ageing of PUR foams, in Proceedings of the 2nd Int. SPI-Workshop on Long-term Thermal Performance of Cellular Plastics, Ontario, June.

    Google Scholar 

  13. Patankar, S. V. (1980) Numerical Heat Transfer and Fluid Flow, Hemisphere, McGraw-Hill, Washington.

    Google Scholar 

  14. Cunningham, A., Sparrow, D. J., Rosbotham, I. D. and de Nazelle, G. M. R. du Cauzé (1989) A fundamental study of the thermal conductivity ageing of rigid PUR foam blown with HFA-141b/C02 and HFA-123/C02 mixtures, in Proceedings of the SPI 32nd Annual conference, San Francisco, pp. 56–60.

    Google Scholar 

  15. Brehm, T. R. and Glicksman, L. R. (1989) A new sorption technique for rapid measurement of gas diffusion and solubility in closed cell foam insulation, in Proceedings of 32nd Annual Conference, San Francisco, 1989.

    Google Scholar 

  16. Krevelen, D. W. van (1990) Properties of Polymers, 3rd edn, Elsevier, Amsterdam.

    Google Scholar 

  17. Shankland, I. R. (1990) Measurement of gas-diffusion in closed-cell foams, in Insulation Materials, Testing and Applications, STP 1030 (ed. D. L. McElroy and J. M. Kimpflen), ASTM, Philadelphia, pp. 174–88.

    Chapter  Google Scholar 

  18. Tramblay, G. G. and Roux, G. A. (1989) The French prediction method of long-term resistance for gas-filled cellular plastics, in Proceedings 1st Int. Workshop Long-term Thermal Performance of Cellular Plastics, SPI, session C, Canada.

    Google Scholar 

  19. Sandberg, I. and Isberg, J. (1989) Direct measurement of aged thermal resistance on rigid cellular plastics containing a gas with lower thermal conductivity than air, in Proceedings 1st Int. Workshop Long-term Thermal Performance of Cellular Plastics, SPI, session D, Canada.

    Google Scholar 

  20. Bomberg, M. (1989) Scaling factor in ageing of gas filled cellular plastics, in Proceedings 1st Int. Workshop Long-term Thermal Performance of Cellular Plastics, SPI, session D, Canada.

    Google Scholar 

  21. Schwartz, N. V., Bomberg, M. and Kumaran, M. K. (1989) Measurements of the rate of gas diffusion in rigid cellular plastics, in Proceedings 1st Int. Workshop Long-term Thermal Performance of Cellular Plastics, SPI, session A, Canada.

    Google Scholar 

  22. Bart, G. C J. and de Nazelle, G. M. R. du Cauzé (1991) Certification of thermal conductivity ageing of PUR foam, in Proceedings of the SPI/ISOPA, Polyurethanes World Congress 1991, Nice, France, Sept. 24–26, pp. 75–80.

    Google Scholar 

  23. Lindsay, A. L. and Bromley, L. A. (1950) Thermal conductivity of gas mixtures. Industrial and Engineering Chemistry, 42, 1508.

    Article  CAS  Google Scholar 

  24. Boetes, R. (1986) Heat transfer reduction in closed cell in polyurethane foams. PhD thesis, Dept. of Applied Physics, Delft University of Technology.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hoogendoorn, C.J. (1994). Thermal ageing. In: Hilyard, N.C., Cunningham, A. (eds) Low density cellular plastics. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1256-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1256-7_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4547-6

  • Online ISBN: 978-94-011-1256-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics