Skip to main content

Heat transfer in foams

  • Chapter

Abstract

One of the primary applications of polymeric foams is for thermal insulations. Because of the modest proportion of solid in a foam and the consequent large volume fraction of gas which has a much lower thermal conductivity the resultant conductivity of the foam is much less than that of a solid body made of the same material. In this chapter the foam conductivity refers to the effective value exhibited by the foam. It is the ratio of the rate of heat transfer per unit cross-sectional area to the applied temperature difference.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ASHRAE Handbook (1989) Fundamentals, Amer. Soc. Heating, Refrig. and Air Cond. Eng., Atlanta, GA.

    Google Scholar 

  2. Rohsenow, W. M., Hartnett, J. P. and Ganic, E. N. (1985) Handbook of Heat Transfer Fundamentals, 2nd edn, McGraw-Hill, New York.

    Google Scholar 

  3. Mclntire, O. R. and Kennedy, R. N. (1948) Styrofoam for low temperature insulation. Chem. Eng. Prog., 44, 9.

    Google Scholar 

  4. Mclntire, O. R. and Kennedy, R. N. (1948) Styrofoam for low temperature insulation. Chem. Eng. Prog., 44, 727–30.

    Google Scholar 

  5. Gorring, R. L. and Churchill, S. W. (1961) Thermal conductivity of heterogeneous materials. Chem. Eng. Progress, 57(7), 53–9.

    Google Scholar 

  6. Skochdopole, R. E. (1961) The thermal conductivity of foamed plastics. Chem. Eng. Progress, 57(10), 55–9.

    Google Scholar 

  7. Reitz, D. W., Schuetz, M. A. and Glicksman, L. R. (1984) A basic study of aging of foam insulation. Journal of Cellular Plastics, 20(2), 104–13.

    Article  CAS  Google Scholar 

  8. Fox, T. J. (1986) Aging in closed-cell phenolic foam. MS Thesis, MIT, Cambridge, Massachusetts.

    Google Scholar 

  9. Page, M. C. (1991) Effects of alternate blowing agents on the aging of closed-cell foam insulation. MS thesis, MIT, Cambridge, Massachusetts.

    Google Scholar 

  10. Russell, H. W. (1935) Principles of heat flow in porous insulators. J. Amer. Ceramic Society, 18(1), 1–5.

    Article  CAS  Google Scholar 

  11. Doherty, D. J., Hurd, R. and Lester, G. R. (1962) The physical properties of rigid polyurethane foams. Chem. and Industry, 30, 1340–56.

    Google Scholar 

  12. Agnihotri, A. K. and Lemlich, R. (1981) Electrical conductivity and the distribution of liquid in polyhedral foam. J. Coll. Interface Sci., 84(1), 42–6.

    Article  CAS  Google Scholar 

  13. Maxwell, J. C. (1892) A Treatise on Electricity and Magnetism, 3rd edn, Vol. 1, Clarendon Press, Oxford, p. 440.

    Google Scholar 

  14. Lemlish, R. (1978) A theory for the limiting conductivity of polyhedral foam at low density. J. Coll. Interface Sci., 64(1), 107–10.

    Article  Google Scholar 

  15. Schuetz, M. A. (1982) Heat transfer in foam insulation. MS thesis, MIT, Cambridge, Massachusetts.

    Google Scholar 

  16. Datye, A. B. and Lemlich, R. (1983) Liquid distribution and electrical conductivity in foam. Int. J. Multiphase Flow, 9(6), 627–38.

    Article  CAS  Google Scholar 

  17. Torpey, M. R. (1987) A study of radiative heat transfer through foam insulation. MS thesis, MIT, Cambridge, Massachusetts.

    Google Scholar 

  18. Gibson, L. J. and Ashby, M. F. (1988) Cellular Solids, Structure and Properties, Pergamon Press, New York.

    Google Scholar 

  19. Fricke, H. (1924) A mathematical treatment of the electric conductivity and capacity of disperse systems. I. Conductivity of a suspension of homogeneous spheroids. Physical Review, 24, 575–87.

    Article  CAS  Google Scholar 

  20. Cunningham, A. and Sparrow, D. J. (1986) Rigid polyurethane foam: What makes it the most effective insulant? Cellular Polymers, 5, 327–42.

    CAS  Google Scholar 

  21. Cunningham, A. (1986) Structured model of heat transfer through rigid polyurethane foams. Proc. Conf. on Heat Transfer in Cryoengineering and Refrigeration, 32–49.

    Google Scholar 

  22. Sinofsky, M. (1984) Property measurement and thermal performance prediction of foam insulation. MS thesis, MIT, Cambridge, Massachusetts.

    Google Scholar 

  23. Ball, G. W., Hurd, R. and Walker, M. G. (1970) The thermal conductivity of rigid unrethane foams. J. of Cellular Plastics, 66(2), 66–78.

    Article  Google Scholar 

  24. Valenzuela, J. A. and Glicksman, L. R. (1981) Thermal resistance and aging of rigid urethane foam insulation. Proc. of DOE-ONRL Workshop on Mathematical Modeling of Roofs, Conf. 881, Nov., 79–261.

    Google Scholar 

  25. Williams R. J. J. and Aldo G. M. (1983) Thermal conductivity of plastic foams. Polymer Engineering and Science, 23, April, 293–8.

    Article  CAS  Google Scholar 

  26. Schuetz, M. A. and Glicksman, L. R. (1984) A basic study of heat transfer through foam insulation. Journal of Cellular Plastics, 20(2), 114–21.

    Article  CAS  Google Scholar 

  27. Viskanta, R. and Grosh, R. J. (1962) Heat transfer by simultaneous conduction and radiation in an absorbing medium, J. Of Ht Trans. 84, 63–72.

    Article  Google Scholar 

  28. Hottel, H. C. and Sarofim, A. F. (1967) Radiative Transfer, McGraw-Hill, New York.

    Google Scholar 

  29. Fine, H. A., Jury, S. H., Yarbrough, D. W. and McElroy, D. L. (1980) Analysis of heat transfer in building thermal insulation, Report No. ORNL/TM-7481, Oak Ridge, TN.

    Google Scholar 

  30. Glicksman, L. R., Schuetz, M. and Sinofsky, M. (1987) Radiation heat transfer in foam insulation. Int. J. Ht and Mass Transfer, 30(1), 187–97.

    Article  CAS  Google Scholar 

  31. Lee, H. and Buckius, R. O. (1982) Scaling anisotropic scattering in radiation heat Transfer for a planer medium. J. Heat Trans., 104, 68–75.

    Article  Google Scholar 

  32. Larkin, B. and Churchill, S. N. (1959) Heat transfer by radiation through porous insulations. AIChE., 5(4), 467–74.

    Article  Google Scholar 

  33. Glicksman, L. R., Mozgowiec, M. and Torpey, M. R. (1990) Radiation heat transfer in foam insulation. Proc. Ninth International Heat Trans. Conf., Jerusalem.

    Google Scholar 

  34. Gluck, D. G., Soukup, T. G. and Moore, W. J. (1989) Polyurethanes 89 Proc. SPI — 32nd Annual Polyurethane Technical/Marketing Conference, San Francisco CA, October 1–4, 92–100.

    Google Scholar 

  35. Marge, A. L. (1991) The use of coated micropowders to reduce radiation heat transfer in foam insulation. MS thesis, MIT, Cambridge, Massachusetts.

    Google Scholar 

  36. Glicksman, L. R., Torpey M. and Marge A. (1991) Means to improve the thermal conductivity of foam insulation. CFCs and the Polyurethance Industry IV 180. Polyurethane World Congress, Nice France.

    Google Scholar 

  37. Wassiljewa, A. (1904) Warmeleitung in Gasgemischen. Physikalishe Zeitschrift, 5(22), 737–42.

    CAS  Google Scholar 

  38. Lindsay, A. L. and Bromley, L. A. (1950) Thermal conductivity of gas mixtures. Ind. and Eng. Chem., 42(8), 1508–11.

    Article  CAS  Google Scholar 

  39. Tsederberg, N. V. (1965) Thermal Conductivity of Gases and Liquids, MIT Press, Cambridge, Massachusetts.

    Google Scholar 

  40. Reid, R. C., Prausnitz, J. M. and Sherwood, T. K. (1977) The Properties of Gases and Liquids, 3rd edn, McGraw-Hill, New York.

    Google Scholar 

  41. Peters, H. C., Breunese J. N. and Hermans, L. J. F. (1982) Thermal conductivity of gaseous CFCI3 (Freon 11) and CF2Cl2 (Freon 12) and their mixtures with N2 at 292 K. Int. J. of Thermophysics, 3(1), 27–34.

    Article  CAS  Google Scholar 

  42. Glicksman, L. R. and Ostrogorsky, A. G. (1989) Time variation of insulating properties of closed cell foam insulation. J. of Thermal Insulation, 12(4), 270–83.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Glicksman, L.R. (1994). Heat transfer in foams. In: Hilyard, N.C., Cunningham, A. (eds) Low density cellular plastics. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1256-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1256-7_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4547-6

  • Online ISBN: 978-94-011-1256-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics