Skip to main content

The morphology of flexible polyurethane matrix polymers

  • Chapter
Low density cellular plastics

Abstract

The morphological evolution of a flexible polyurethane foam is a complicated process involving many ingredients and multiple simultaneous reactions and processes [1,2] (Fig 4.1). In most cases, the basic polymer-forming reaction occurs between the isocyanate and a polyol. This is a simple addition process which, when extended to polyfunctional reagents, provides a direct route to covalently crosslinked polymers. Density reduction is provided via the in situ generation of a gas or via the volatilization of a low boiling point blowing agent. Historically, foamers have used chlorofluorocarbons for this purpose; however, ecological considerations have caused the industry to re-evaluate alternate density reduction technologies. In many present-day foam applications, the density-reducing gas is formed in situ from the reaction of isocyanate with water. The basic chemistry for a water-blown foam is outlined in Fig 4.2. The reaction products, which include urethanes, ureas, amides, allophanates, biurets, carbodiimides and isocyanurates, subsequently associate to generate an auxiliary network. The latter associations generally lead to a polymer having multiphase molecular morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rossmy, G. R., Kollmeier, H. J., Lidy, W., Senator, H. and Wiemann, M. (1977) Cell opening in one-shot flexible polyether based polyurethane foams. The role of silicone surfactant and its foundation in the chemistry of foam formation. Journal of Cellular Plastics, 13, 26.

    Article  CAS  Google Scholar 

  2. Hauptmann, G., Dorner, K-H., Hocker, H. and Pfisterer, G. (1980) Chemical and physical processes in the manufacture of flexible polyurethane foams. Proceedings of the International Conference on Cellular and Non-cellular Polyurethanes, Strasbourg, June.

    Google Scholar 

  3. Manson, J. A. and Sperling, L. H. (1976) Polymer Blends and Composites, Plenum Press, New York.

    Google Scholar 

  4. Solc, K. (ed.) (1982) Polymer Compatibility and Incompatibility: Principles and Practice, MMI Symp. Ser., Vol. 2, Harwood Academic Publishers, New York.

    Google Scholar 

  5. Olabisi, O., Robeson, L. M. and Shaw, M. T. (1979) Polymer-Polymer Miscibility, Academic Press, New York.

    Google Scholar 

  6. Walsh, D. J., Higgins, J. S. and Maconnachie, A. (1985) Polymer Blends and Mixtures, Martinus Nijihoff, Boston.

    Book  Google Scholar 

  7. Flory, P. J. (1953) Principles of Polymer Chemistry, Cornell University Press, Ithaca, NY.

    Google Scholar 

  8. Ryan, A. J. (1990) Spinodal decomposition during bulk copolymerization: reaction injection molding, Polymer, 31, 707.

    Article  CAS  Google Scholar 

  9. Bailey, F. E. and Critchfiled, F. E. (1981) Chemical reaction sequence in the formation of water-blown, urethane foam. Journal of Cellular Plastics, 17, 333.

    Article  CAS  Google Scholar 

  10. Van Gheluwe, P. and Leroux, P. J. (1983) Sequential nature of the exothermic reactions leading to the formation of flexible polyurethane foams. Journal of Applied Polymer Science, 28, 2053.

    Article  Google Scholar 

  11. Cole, K. C. and Van Gheluwe, P. (1987) Flexible polyurethane foam. I. FTIR analysis of residual isocyanate. Journal of Applied Polymer Science, 34, 395.

    Article  CAS  Google Scholar 

  12. Van Gheluwe, P., Cole, K. C., Hebrard, M. J. and Leroux, J. (1987) Attenuated total reflectance infrared spectroscopic analysis of high index foams. Journal of Cellular Plastics, 23, 73.

    Article  Google Scholar 

  13. Coleman, M. M., Lee, K. H., Skrovanek, D. J. and Painter, P. C. (1986) Hydrogen bonding in polymers. 4. Infrared temperature studies of a simple polyurethane. Macromolecules, 19, 2149, and references therein.

    Article  CAS  Google Scholar 

  14. Bartish, C. M., Yue, H. J., Seger, M. R. and Manis, P. A. (1989) Solid-state NMR as an analytical tool to characterize the effectiveness of isocyanurate catalyst. Proceedings of the SPI-32nd Annual Technical/Marketing Conference, San Francisco, CA, October.

    Google Scholar 

  15. Priester, R. D., McClusky, J. V., O’Neill, R. E., Turner, R. B., Harthcock, M. A. and Davis, B. L. (1990) FT-IR — A probe into the reaction kinetics and morphology development of urethane foams. Journal of Cellular Plastics, 26, 346.

    Article  Google Scholar 

  16. Wilkes, G. L., Abouzahr, S. and Radovich, D. (1983) Small angle X-ray scattering from polyurethane foams of different composition: An analytical method for better understanding their fine structure. Journal of Cellular Plastics, 19, 248.

    Article  CAS  Google Scholar 

  17. Armistead, J. P., Wilkes, G. L. and Turner, R. B. (1988) Morphology of water-blown flexible polyurethane foams. Journal of Applied Polymer Science, 35, 601.

    Article  CAS  Google Scholar 

  18. Turner, R. B., Spell, H. B. and Wilkes, G. L. (1984) Dynamic mechanical spectroscopy study of flexible urethane foam. Proceedings of the SPI-28th Annual Technical/Marketing Conference, San Antonio, TX, November.

    Google Scholar 

  19. Armistead, J. P. (1987) Morphology of Water-Blown Flexible Polyurethane Foams, MS Thesis, Virginia Polytechnic Institute and State University, Department of Chemical Engineering, Blacksburg, VA.

    Google Scholar 

  20. Hendricks, R. W. (1978) The ORNL 10-meter small angle X-ray scattering camera. Journal of Applied Crystallography, 11, 15.

    Article  CAS  Google Scholar 

  21. NCSRA (1983) User Notes for the 10-Meter SAXS Instrument, ORNL, Oak Ridge, TN.

    Google Scholar 

  22. Tyagi, D. (1985) Structure-Property Relationships in Segmented Copolymers, PhD Thesis, Virginia Polytechnic Institute and State University, Department of Chemical Engineering, Blacksburg, VA.

    Google Scholar 

  23. Helfand, E. (1975) Theory of inhomogeneous polymers. Block copolymers, polymer-polymer interfaces. Accounts of Chemical Research, 8, 295.

    Article  CAS  Google Scholar 

  24. Helfand, E. and Tagami, Y. (1975) Theory of the interface between immiscible polymers. Polymer Letters, 9, 741.

    Article  Google Scholar 

  25. Koberstein, J., Morra, B. and Stein, R. S. (1980) Small angle X-ray scattering studies of interstitial composites. Journal of Applied Crystallography, 13, 34.

    Article  CAS  Google Scholar 

  26. Gast, J. A. (1972) Selecting the right defoamer. Soap/Cosmetics/Chemical Specialties, 72, 48, and references therein.

    Google Scholar 

  27. Ross, S. (1967) Mechanisms of foam stabilization and antifoaming action. Chemical Engineering Progress, 63, 41 and references therein.

    CAS  Google Scholar 

  28. Hull, K. G. (1977) Technology and application of polymer polyol based, low density, high resilience slabstock foam in Europe. Journal of Cellular Plastics, 198, 76.

    Google Scholar 

  29. Lockwood, R. J., McClellan, Alberino, L. M. and Harkins, P. D. (1983) Recent developments in MDI-based flexible foams: Chemistry and morphology. Proceedings of the SPI-27th Annual Technical/Marketing Conference, Bal Harbour, FL, October.

    Google Scholar 

  30. Lockwood, R. J. and Alberino, L. M. (1983) Advances in elastomeric polyurethanes. MDI flexible polyurethane foams: Chemistry, morphology. Elastomerics, 115, 27.

    CAS  Google Scholar 

  31. Reichel, C. J., Berkowski, L. A. and Taylor, J. D. (1985) Lower density MDI based flexible molded foams. Proceedings of the SPI-29th Annual Technical/Marketing Conference, Reno, NV, October.

    Google Scholar 

  32. Haggerty, T. I., Katz, J. J., Watts, A. and Brooks, M. F. (1984) All-MDI flexible foam — Advantages in single and dual hardness automotive seat molding. Proceedings of the SPI-28th Annual Technical/Marketing Conference, San Aatonio, TX, November.

    Google Scholar 

  33. Hinze, K. J., Priester, R. D. and Turner, R. B., unpublished results.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Priester, R.D., Turner, R.B. (1994). The morphology of flexible polyurethane matrix polymers. In: Hilyard, N.C., Cunningham, A. (eds) Low density cellular plastics. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1256-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1256-7_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4547-6

  • Online ISBN: 978-94-011-1256-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics