Skip to main content

Characterization of polymeric cellular structures

  • Chapter

Abstract

An important element of the study of polymeric foams is the application of a valid method for the characterization of foam cell structure. Factors to be considered before undertaking such a characterization are whether it should be qualitative or quantitative, what is to be characterized, what will the results mean and to what purpose will the results be put?

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bickerman, J. J. (1973) Foam films, in Foams, Springer-Verlag, NY, pp. 1–31.

    Chapter  Google Scholar 

  2. Benning, C. (1969) Physics and chemistry of foam formation and stability. Plastic Foams, 11, 1–9.

    Google Scholar 

  3. Monsalve, A. and Hector, R. S. (1984) The stability of foams: dependence of observations on the bubble size distribution. J. Colloid Interface Science, 97, 327–35.

    Article  CAS  Google Scholar 

  4. Brady, A. P. and Rogers, S. (1944) The measurement of foam stability. J. Amer. Chem. Soc., 66. 1348–56.

    Article  CAS  Google Scholar 

  5. Gent, A. N. and Thomas, A. G. (1959) The deformation of foamed elastic materials. J. Appl. Polym. Sci., 1. 107–13.

    Article  CAS  Google Scholar 

  6. Gent, A. N. and Thomas, A. G. (1963) Mechanics of foamed elastic materials. Rubber Chem. Technol., 36, 597–610.

    Article  CAS  Google Scholar 

  7. Gioumounis, G. L. (1963) Shape of cells in polymer foams. Appl. Polym. Sci., 7, 947–57.

    Article  Google Scholar 

  8. Chan, A. R. and Nakamura, M. (1969) Mechanical properties of plastic foams. The dependence of yield stress and modulus on the structural variables of closed-cell and open-cell foams. J. Cellular Plast. 5, 112–18.

    Article  Google Scholar 

  9. Menges, G. and Knipschild, F. (1975) Estimation of mechanical properties for rigid polyurethane foams. Polymer Engineering, 15, 623–7.

    Article  CAS  Google Scholar 

  10. Lederman, J. M. (1971) The prediction of tensile properties of flexible foams. J. Appl. Polym. Sci., 15, 693–701.

    Article  CAS  Google Scholar 

  11. Patel, M. R. and Finnie, I. (1970) Structural features and mechanical properties of rigid foams. J. Materials, 5, 909–92.

    Article  CAS  Google Scholar 

  12. Gibson, L. J. and Ashby, M. F. (1988) Cellular Solids, Structure and Properties, Pergamon Press, New York, Ch. 5.

    Google Scholar 

  13. Warren, W. E. and Kraynik, A. M. (1988) The linear elastic properties of open cell foams. J. Appl. Mech., 55, 341–6.

    Article  Google Scholar 

  14. Humphries, D. W. (1969) Mensuration methods in optical microscopy. Adv. Optical and Electron Microscopy, 3, 1–31.

    Google Scholar 

  15. Annual Book of ASTM Standards, Standard Test Method for Cell Size of Rigid Cellular Plastics, D-3576, Vol. 08.03.

    Google Scholar 

  16. Pugh, A. (1976) Calculations, in Polyhedra. Univ. of California Press, Los Angeles, pp. 89–99.

    Google Scholar 

  17. Selby, S. M. (ed.) (1970) Handbook of Tables for Mathematics, 4th edn, Mensuration Formulae, The Chemical Rubber Co., Cleveland, Ohio.

    Google Scholar 

  18. Sparks, L. L. and Arvidson, J. M. (1984) Thermal and mechanical properties of Polyurethane foams, in Proceedings of the SPI-28th Technical/Marketing Conference, Society of Plastics Industry, Inc., New York, pp. 273–9.

    Google Scholar 

  19. Walters, R.J. and Berns, M. W. (1988) Digital image processing and analysis, in Video Microscopy, (ed. S. Inoue), Plenum Press, New York, pp. 327–86.

    Google Scholar 

  20. Adams, J. R., Driscoll, E. C. and Reader, C. (1984) Image processing systems, in Digital Image Processing Techniques (ed. M. P. Ekstrom), Academic Press, New York, pp. 286–460.

    Google Scholar 

  21. Russ, J. (1990) Introduction, image measurements in Computer Assisted Microscopy, Plenum Press, New York, pp. 1–11.

    Chapter  Google Scholar 

  22. Russ, J. (1990) Introduction, image measurements in Computer Assisted Microscopy, Plenum Press, New York, pp. 175–218.

    Chapter  Google Scholar 

  23. Schwartz, N. V. and Bomberg, M. T. (1991) Image analysis and characterisation of cellular plastics. J. Thermal Insulation, 15, 153–71.

    CAS  Google Scholar 

  24. Chaffanjon, P. and Verhelst, G. (1991) An automated image analysis method for the characterization of flexible foam cellular structures, in Proceedings of the Polyurethane World Congress, Society of Plastic Industry Inc., New York, pp. 545–52.

    Google Scholar 

  25. Underwood, E. E. (1970) Basic concepts, symbols and measurement, in Quantitative Stereology, Addison-Wesley, Reading, Ma., pp 1–18.

    Google Scholar 

  26. Aherne, W. A. and Dunhill, M. S. (1982) Methods of counting discrete objects, methods of estimating size of discrete objects, in Morphometry, Edward Arnold, London, pp. 60–74.

    Google Scholar 

  27. Aherne, W. A. and Dunhill, M. S. (1982) Methods of counting discrete objects, methods of estimating size of discrete objects, in Morphometry, Edward Arnold, London, pp. 75–8.

    Google Scholar 

  28. Rhodes, M. B. and Khaykin, B. (1986) Foam characterization and quantitative stereology. Langmuir, 2 643–9.

    Article  CAS  Google Scholar 

  29. Wineland, S. H. and Bartz, A. M. (1986) An instrument for measuring cell size of polystyrene and polyethylene foams. J. Cellular Plast., 22, 122–38.

    Article  CAS  Google Scholar 

  30. Green, H. (1927) The effect of non-uniformity and particle shape on ‘average particle size’. J. Franklin Institute, 12, 713–29.

    Article  Google Scholar 

  31. Miller, J. C. and Miller, J. N. (1988) Rapid and non-parametric methods, in Statistics for Analytical Chemistry, Ellis Horwood, Chichester, England, pp. 137–61.

    Google Scholar 

  32. Conover, W. J. (1971) Statistical interference, in Practical Non-parametric Statistics, Wiley and Sons, pp. 61–94.

    Google Scholar 

  33. Newbury, D. E. (1990) Microanalysis to nanoanalysis: Measuring composition at high spatial resolution. Nanotechnology, 1, 103–30.

    Article  Google Scholar 

  34. Akabori, K. and Fujimoto, H. (1980) A method for measuring cell membrane thickness of polyurethane foam. International Progress in Urethanes, 2, 41–60.

    CAS  Google Scholar 

  35. DuCauze de Nazelle, G. (1991) Fundamental understanding of the thermal conductivity aging in polyurethane foams. Presented at the International Workshop on Long-Term Thermal Performance of Cellular Plastics, Niagara-on-the-Lake, Ontario.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Rhodes, M.B. (1994). Characterization of polymeric cellular structures. In: Hilyard, N.C., Cunningham, A. (eds) Low density cellular plastics. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1256-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1256-7_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4547-6

  • Online ISBN: 978-94-011-1256-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics