Skip to main content

Molecular approaches to the design of biotic crop protection agents

  • Chapter
Book cover Molecular Biology in Crop Protection
  • 101 Accesses

Abstract

The use of microbial biopesticides to control insect pests has, for many years, been eclipsed by the application of chemical insecticides to achieve that goal. Bacterial, viral and fungal species all provide candidates for use as biological insecticides. They are perceived as ‘environmentally friendly’ products, with few of the undesirable side effects of the chemical pesticides. Frequently, they also exhibit a degree of host specificity denied to chemicals. This permits targeting of certain insect pests, without harming non-target organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdel-Aal, Y.A.I, and Hammock, B.D. (1986) Transition state analogs as ligands for affinity purification of juvenile hormone esterase. Science, 233, 1073–6.

    Article  PubMed  CAS  Google Scholar 

  • Akiba, Y. (1986) Microbial ecology of Bacillus thuringiensis VI Germination of Bacillus thuringiensis spores in the soil. Applied Entomology and Zoology, 21, 76–80.

    Google Scholar 

  • Angus, T. A. (1954) A bacterial toxin paralysing silkworm larvae. Nature, 173, 545–6.

    Article  PubMed  CAS  Google Scholar 

  • Barnes, A.C. and Cummings, S.E. (1987) US Patent No. 4695455.

    Google Scholar 

  • Beach, R.M. (1990) Application for an experimental use permit to ship and use a pesticide for experimental purposes only. Permit number 58788-EUP-4 for InCideTM 586. Crop Genetics International, Hanover, MD.

    Google Scholar 

  • Bedford, G.O. (1980) Biology, ecology, and control of palm rhinoceros beetles. Annual Review of Entomology, 25, 309–39.

    Article  Google Scholar 

  • Bedford, G.O. (1981) Control of the rhinoceros beetle by baculovirus, in Microbial Control of Pests and Diseases 1970–1980, (ed. H.D. Burges), Academic Press, New York, pp. 409–26.

    Google Scholar 

  • Bergold, G.H. (1947) Die Isolierung des Polyeder-virus und die Natur der Polyeder. Zeitschrift fur Naturforsch Teil B, 2, 122–43.

    Google Scholar 

  • Berliner, E. (1911) Uber die Schlaff sucht der Mehlmottenraupe. Zeitschrift fur Gesamte Getreidewsen (Berlin), 3, 63–70.

    Google Scholar 

  • Berliner, E. (1915) Uber die Schlaffsucht der Mehlmottenraupe. Zeitschrift fur Angewandte Entomologie, 2, 29–56.

    Article  Google Scholar 

  • Bernier, L., Cooper, R.M., Charnley, A.K. and Clarkson, J.M. (1989) Transformation of the entomopathogenic fungus Metarhiziumanisopliae to benomyl resistance. FEMS Microbiology Letters, 60, 261–6.

    Article  CAS  Google Scholar 

  • Bishop, D.H.L., Entwistle, P.F., Cameron, I.R., Allen, C.J. and Possee, R.D. (1988) Field trials of genetically engineered baculovirus insecticides, in The Release of Genetically Engineered Micro-organisms, (eds M. Sussman, C.H. Collins, F.A. Skinner and D.E. Stewart-Tull), Academic Press, New York, pp. 143–79.

    Google Scholar 

  • Burges, H.D. (1973) Enzootic diseases of insects, in Regulation of Insect Populations by Microorganisms, (ed. L.A. Bulla Jr), Annals of the New York Academy of Sciences, 217, 31–49.

    Google Scholar 

  • Cameron, I.R. and Possee, R.D. (1989) Conservation of polyhedron gene promoter function between Autographa californica and Mamestra brassicae nuclear poly-hedrosis viruses. Virus Research, 12, 183–99.

    Article  PubMed  CAS  Google Scholar 

  • Carlton, B.C., Gawron-Burke, C. and Johnson, T.B. (1990) Exploiting the genetic diversity of Bacillus thuringiensis for the creation of new biopesticides, in Proceedings of the Fifth International Colloquium on Invertebrate Pathology and Microbial Control, Society for Invertebrate Pathology, Adelaide, pp. 18–22.

    Google Scholar 

  • Charnley, A.K. (1984) Physiological aspects of destructive pathogenesis in insects by fungi: a speculative review, in Invertebrate—Microbe Interactions, (eds J.M. Anderson, D.M. Rayner and D.W.H. Walton), British Mycological Society Symposium 6, Cambridge University Press, Cambridge, pp. 229–70.

    Google Scholar 

  • Charnley, A.K. and St Leger, R.J. (1991) The role of cuticle-degrading enzymes in fungal pathogenesis in insects, in The Fungal Spore and Disease Initiation in Plants and Animals, (eds G.T. Cole and H.C. Hoch), Plenum Publishing Co., London, pp. 267–86.

    Google Scholar 

  • Coles, R.B. and Pinnock, D.E. (1982) Control of the pasture cockchafer with the fungal pathogen Metarhizium anisopliae, in Proceedings of the 3rd Australian Conference on Grassland Invertebrate Ecology (ed. K.E. Lee), CSIRO, Australia, pp. 191–98.

    Google Scholar 

  • Cory, J.S. and Entwistle, P.F. (1990) The effect of time of spray application on infection of the pine beauty moth, Panolis flammea (Den. & Schiff). (Lep., Noctuidae), with nuclear polyhedrosis virus. Journal of Applied Entomology, 110, 235–41.

    Article  Google Scholar 

  • Crickmore, N., Nicholls, C, Earp, D.J., Hogman, T.C. and Ellar, D.J. (1990) The construction of Bacillus thuringiensis strains expressing novel entomocidal delta-endotoxin combinations. Biochemical Journal, 270, 133–6.

    PubMed  CAS  Google Scholar 

  • Cunningham, J.C. (1988). Baculoviruses: their status compared to Bacillus thuringiensis as microbial insecticides. Outlook on Agriculture, 17, 10–7.

    Google Scholar 

  • Darbon, H., Zlotkin, E., Kopeyen, E., van Rietschoten, J., and Rochat, H. (1982) Covalent structure of the insect toxin of the North African scorpion An-droctonus australis Hector. International Journal of Peptide and Protein Research, 20, 230–3.

    Google Scholar 

  • Doyle, C.J. and Entwistle, P.F. (1988) Aerial application of mixed virus formulations to control joint infestations of Panolis flammea and Neodiprion sertifer on lodgepole pine. Annals of Applied Biology, 113, 119–27.

    Article  Google Scholar 

  • Dulmage, H.T., Graham, H.M. and Martinez, E. (1978) Interactions between the tobacco budworm, Heliothis virescens, and the delta-endotoxin produced by the HD-1 isolate of Bacillus thuringiensis var. kurstaki: relationship between length of exposure to the toxin and survival. Journal of Invertebrate Pathology, 32, 40–50.

    Article  CAS  Google Scholar 

  • Ellar, D.J. (1989) Investigation of the molecular basis of Bacillus thuringiensis delta-endotoxin specificity and toxicity. Abstracts of the Societyfor Invertebrate Pathology Meeting, College Park, MD, 20–24 August.

    Google Scholar 

  • Fargues, J. (1984). Adhesion of the fungal spore to the insect cuticle in relation to pathogenicity, in Infection Processes of Fungi — Conference Report, (eds D.W. Roberts and J.R. Aist), Rockefeller Foundation, New York, pp. 90–110

    Google Scholar 

  • Ferron, P. (1978) Etiologie et epidemiolgie des muscardines. These Doctorate d’Etat. University Pasteur and Marie Curie, Paris.

    Google Scholar 

  • Ferron, P. (1981) Pest Control by the fungi Beauveria and Metarhizium, in Microbial Control of Pests and Plant Diseases 1970–1980, (ed. H.D. Burges), Academic Press, New York, pp. 465–82.

    Google Scholar 

  • Franz, J.M. and Krieg, A. (1980) Mikrobiologische Schadlingsbekampfung in China. Ein Reisebericht. Forum Mikrobiologie, 3, 173–6.

    Google Scholar 

  • Ge, A.Z., Rivers, D., Milne, R. and Dean, D.H. (1991) Functional domains of Bacillus thuringiensis insecticidal crystal proteins: refinement of the Heliothis virescens and Trichoplusia ni specificity domains on CryIA(c). Journal of Biological Chemistry, 266, 17954–8.

    PubMed  CAS  Google Scholar 

  • Gelernter, W. and Schwab, G.E. (1993) Transgenic bacteria, viruses, algae and other microorganisms as Bacillus thuringiensis toxin delivery systems, in Bacillus thuringiensis, An Environmental Pesticide: Theory and Practice, (eds P.F. Entwistle, J.S. Cory, M.J. Bailey and S. Higgs), John Wiley, New York, pp. 89–104.

    Google Scholar 

  • Georghiou, G.P. and Lagunes, A. (1988) The Occurrence Of Resistance To Pesticides: Cases Of Resistance Reported Worldwide Through 1988, FAO, Rome, p 325.

    Google Scholar 

  • Goettel, M., St Leger, R.J., Bhairi, S., Jung, M., Oakley, B., Roberts, D. and Staples, R.C. (1990) Pathogenicity and growth of metarhizium-anisopliae stably transformed to benomyl resistance. Current Genetics, 17, 129–32.

    Article  CAS  Google Scholar 

  • Gonzalez, J.M. and Carlton, B.C. (1982) Plasmid transfer in Bacillus thuringiensis, in Genetic Exchange: A Celebration and a New Generation, (eds U.N. Steips, S.H. Goodall, W.R. Guild and G.A. Wilson), Marcel Dekker, New York, pp. 85–95.

    Google Scholar 

  • Guangyu, Z. (1989) The first commercial viral pesticide in China. Integrated Pest Management Practice, 11, 13.

    Google Scholar 

  • Hall, R.A. (1981) The fungus Verticillum lecani as a microbial insecticide against aphids and scales, in Microbial Control of Pests and Plant Diseases 19701980, (ed. H.D. Burges), Academic Press, New York, pp. 483–98.

    Google Scholar 

  • Hall, R. A. and Papierok, B. (1982) Fungi as biological control agents of agricultural and medical importance. Parasitology, 84, 205–40.

    Article  Google Scholar 

  • Hammock, B.D. (1985) Regulation of juvenile hormone titer: degradation, in Comparative Insect Physiology Biochemistry and Pharmacology, (eds G. A. Kerkut and L.I. Gilbert), Pergamon Press, New York, pp. 431–72.

    Google Scholar 

  • Hammock, B.D., Bonning, B.C., Possee, R.D., Hanzlik, T.N. and Maeda, S. (1990) Expression and effects of the juvenile hormone esterase in a baculovirus vector. Nature, 344, 458–61.

    Article  CAS  Google Scholar 

  • Hanel, H. and Watson, J. A.L. (1983) Preliminary field tests on the use of Metarhizium anisopliae for the control of Nasutitermes exitiosus (Hill) (Isoptera: Termitidae). Bulletin of Entomological Research, 73, 305–13.

    Article  Google Scholar 

  • Hannay, C.L. (1953) Crystalline inclusions in aerobic spore-forming bacteria. Nature, 172, 1004.

    Article  PubMed  CAS  Google Scholar 

  • Hannay, C.L. and Fitz-James, P. (1955) The protein crystals of Bacillus thuringiensis Berliner. Canadian Journal of Microbiology, 1, 694–709.

    Article  PubMed  CAS  Google Scholar 

  • Hanzlik, T.N. and Hammock, B.D. (1987) Characterization of affinity-purified juvenile hormone esterase from Trichoplusia ni. Journal of Biological Chemistry, 262, 13584–91.

    PubMed  CAS  Google Scholar 

  • Hanzlik, T.N., Abdel-Aal, Y.A.I, Harshman, L.G. and Hammock, B.D. (1989) Isolation and sequencing of cDNA clones coding for juvenile hormone esterase from Heliothis virescens. Journal of Biological Chemistry, 264, 12419–25.

    PubMed  CAS  Google Scholar 

  • Heale, J.B., Isaac, J. and Chandler, D. (1989) Prospects for strain improvement in Entomopathogenic fungi. Pesticide Science, 26, 79–92.

    Article  Google Scholar 

  • Hendrick, K., De Loof, A. and Van Mellaert, H. (1990) Effects of Bacillus thuringiensis isolates effective on resistant Indian meal moth, in Genetics and Biotechnology of the Bacilli, vol. 2, (eds A.T. Ganesan and J. A. Hoc), Academic Press, New York, pp. 233–8.

    Google Scholar 

  • Honee, G., Vriezen, W. and Visser, B. (1990) A translation fusion product of two different insecticidal crystal proteins of Bacillus thuringiensis exhibits an enlarged insecticidal spectrum. Applied and Environmental Microbiology, 56, 823–5.

    PubMed  CAS  Google Scholar 

  • Hussey, N.W. and Tinsley, T.W. (1980) Impressions of insect pathology in the People’s Republic of China, in Microbial Control of Pests and Plant Diseases 1970–1980, (ed. H.D. Burges), Academic Press, New York, pp. 513–38.

    Google Scholar 

  • Ignoffo, C.M. (1973) Development of a viral insecticide: Concept to commercialization. Experimental Parasitology, 33, 380–406.

    Article  PubMed  CAS  Google Scholar 

  • Ishawata, S. (1901) On a kind of severe flacherie (sotto disease). Dainihon Sanshi Kaiho, 114, 1–5.

    Google Scholar 

  • Jackson, C.W. and Heale, J.B. (1987) Parasexual crosses by hyphal anastomosis and protoplast fusion in the entomopathogen Verticillium lecani. Journal of General Microbiology, 133, 3537–47.

    Google Scholar 

  • Katoaka, H., Troetschler, R.G., Li, J.P., Kramer, S.J., Carney, R.L. and Schooley, D. A. (1989) Isolation and identification of a diuretic hormone from the tobacco hornworm, Manduca sexta. Proceedings of the National Academy of Science USA, 86, 2976–80.

    Article  Google Scholar 

  • Keller, S. (1983) Die mikrobiologische Bekampfung des Maikafers (Melolontha melolontha L.) mit dem Pilz Beauveria brongniarti. Mitt Schweiz. Landwirtschaft, 31, 61–4.

    Google Scholar 

  • King, L.A., Possee, R.D., Hughes, D.S., Atkinson, A.E., Palmer, C.P., Marlow, S.A., Pickering, J.M., Joyce, K.A., Lawrie, A.M., Miller, D.P. and Beadle, D.J. (1994) Advances in insect virology. Advances in Insect Physiology (in press).

    Google Scholar 

  • Kinsinger, R.A. and McGaughey, W.H. (1979) Susceptibility of populations of Indian meal moth and almond moth to Bacillus thuringiensis. Journal of Economic Entomology, 72, 346–9.

    Google Scholar 

  • Klier, A., Bourgouin, C. and Rappoport, G. (1983) Mating between Bacillus subtilis and Bacillus thuringiensis strain aizawai 7–29 and comparison of the structural organization of genes from different serotypes, in Molecular Biology of Microbial Differentiation, (eds J.A. Hoch and P. Setlow), American Society for Microbiology, Washington, DC, pp. 217–224.

    Google Scholar 

  • Knowles, B.H. and Ellar, D.J. (1986) Characterization and partial purification of a plasma membrane receptor for Bacillus thuringiensis var. kurstaki lepidopteran-specific delta-endotoxin. Journal of Cell Science, 83, 89–99.

    PubMed  CAS  Google Scholar 

  • de Kort, C.A.D. and Granger, N.A. (1981) Regulation of juvenile hormone titre. Annual Reviews of Entomology, 26, 1–28.

    Article  Google Scholar 

  • Krassilstschik, J. (1888). La production industrielle des parasites vegetaux pour la destruction des insectes nuisible. Bulletin of Science, France, Belgium, 19, 461–72.

    Google Scholar 

  • Lewis, F.B. (1981) Control of the gypsy moth by a baculovirus, in Microbial Control of Pests and Diseases 19701980, (ed. H.D. Burges), Academic Press, New York, pp. 363–77.

    Google Scholar 

  • Luthy, P., Cordier, J.L. and Fischer, H.M. (1982) Bacillus thuringiensis as a bacterial insecticide: basic consideration and applications, in Microbial and Viral Pesticides, (ed. E. Kurstak), Marcel Dekker, New York, pp. 35–74.

    Google Scholar 

  • Maddrell, S. (1986) Hormonal control of diuresis in insects, in Insect Neurochemistry and Neurophysiology (eds A.B. Borkovec and D.B. Gelman), Humana, Clifton, NJ, pp. 79–90.

    Chapter  Google Scholar 

  • Maeda, S. (1989) Increased insecticidal effect by a recombinant baculovirus carrying a synthetic diuretic hormone. Biochemical and Biophysical Research Communications, 165, 1177–83.

    Article  PubMed  CAS  Google Scholar 

  • Martens, J. W.M., Honee, G., Zuidema, D., van Lent, J.W.M., Visser, B. and Vlak, J.M. (1990) Insecticidal activity of a bacterial crystal protein expressed by a recombinant baculovirus in insect cells. Applied and Environmental Microbiology, 56, 2764–70.

    PubMed  CAS  Google Scholar 

  • McGaughey, W.H. (1985) Insect resistance to the biological insecticide Bacillus thuringiensis. Science 229, 193–5.

    Article  PubMed  CAS  Google Scholar 

  • Merryweather, A.T., Weyer, U., Harris, M.P.G., Hirst, M., Booth, T. and Possee, R.D. (1990) Construction of genetically engineered baculovirus insecticides containing the Bacillus thuringiensis subsp. kurstaki HD-73 delta endotoxin. Journal of General Virology, 71, 1535–44.

    Article  PubMed  CAS  Google Scholar 

  • Metschnikoff, E. (1879) Krankheiten der Larve des Getreidekafers. Odessa, 32 pp.

    Google Scholar 

  • Moscardi, F. and Sosa-Gomez, D.R. (1992) Use of viruses against soybean caterpillars in Brazil, in Pest Management in Soybean, (ed. L.G. Copping, M.B. Green and R.T. Rees), Elsevier, Amsterdam, pp. 98–109.

    Chapter  Google Scholar 

  • Nambier, P.T.C., Ma, S.W. and Iyer, V.N. (1990) Limiting an insect infestation of nitrogen-fixing root nodules of the pigeon pea (Canjanus cajan) by engineering the expression of an entomcidal gene in its root nodules. Applied and Environmental Microbiology, 56, 2866–9.

    Google Scholar 

  • Obukowicz, M.G., Perlak, F.J., Bolten, S.L., Kusano-Kretzmer, K., Mayer, E.J. and Watrud, L.S. (1987) IS50L as a non-self- transposable vector used to integrate the Bacillus thuringiensis delta-endotoxin gene into the chromosome of root-colonizing pseudomonads. Gene, 51, 91–6.

    Article  PubMed  CAS  Google Scholar 

  • Otvos, I.S., Cunningham, J.C. and Friskie, L.M. (1987) Aerial application of nuclear polyhedrosis virus against Douglas-fir tussock moth, Orgyia pseudosugata (McDunnough) (Lepidoptera: Lymantriidae): impact in the year of application. Canadian Entomologist, 119, 69–76.

    Google Scholar 

  • O’Reilly, D.R. and Miller, L.K. (1989) A baculovirus blocks insect molting by producing ecdysteroid UDP-glucosyl transferase. Science, 245, 1110–2.

    Article  PubMed  Google Scholar 

  • Petras, S.T. and Casida, L.E. (1985) Survival of Bacillus thuringiensis spores in soil. Applied and Environmental Microbiology, 50, 1496–501.

    PubMed  CAS  Google Scholar 

  • Risco, B.S.H. (1980) Biological control of the leaf froghopper, Mahanarva posticata Stal., with the fungus Metarhizium anisopliae in the state of Alagoas-Brazil. Entomology Newsletter for the Society of Sugarcane Techniques, 9, 10.

    Google Scholar 

  • Sacchi, V.F., Parenti, P., Hanozet, G.M., Giordana, B., Luthy, P. and Wolfersberger, M.G. (1986) Bacillus thuringiensis toxin inhibits K+ gradient-dependent amino acid transport across the brush border membrane of Pieris brassicae midgut cells. FEBS Letters, 204, 213–8.

    Article  CAS  Google Scholar 

  • Salama,H.S. andSharaby, A. (1985) Histopathological changes in Heliothis armigera infected with Bacillus thuringiensis as detected by electron microscopy. Insect Science Applications, 6, 503–11.

    Google Scholar 

  • Samuels, R.I., Charnley, A.K. and Reynolds, S.E. (1988) Role of destruxins in the pathogenicity of 3 strains of Metarhizium anisopliae. Mycopathologica, 104, 51–8.

    Article  CAS  Google Scholar 

  • Sparks, T.C. and Hammock, B.D. (1980) Comparative inhibition of the juvenile hormone esterases from Trichoplusia ni, Tenebrio monitor, and Musca domestica. Pesticide Biochemistry and Physiology, 14, 290–302.

    Article  CAS  Google Scholar 

  • Stewart, L.M.D., Hirst, M, Lopez-Ferber, M., Merryweather, A.T., Cayley, P.J. and Possee, R.D. (1991) Construction of an improved baculovirus insecticide containing an insect-specific toxin gene. Nature, 352, 85–8.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki, A, Kawakami, K and Tamura, S. (1971) Detection of destruxins in silkworm infested with Metarhizium anisopliae. Agricultural and Biological Chemistry, 35, 1641–3.

    Article  Google Scholar 

  • Tabashnik, B.E., Cushing, N.L., Finson, N. and Johnson, M. (1990) Field development of resistance to Bacillus thuringiensis delta-endotoxins in diamond moth (Lepidoptera: Plutellidae). Journal of Economic Entomology, 83, 49–55.

    Google Scholar 

  • Teitelbaum, Z., Lazarovici, P. and Zlotkin, E. (1979) Selective binding of the scorpion venom insect toxin to insect nervous tissue. Insect Biochemistry, 9, 343–6.

    Article  CAS  Google Scholar 

  • Thompson, W.T. (1989) Agricultural Chemicals, Book 1, Thompson Publications, Fresno, CA, pp. 64–70.

    Google Scholar 

  • Tomalski, M.D. and Miller, L.K. (1991) Insect paralysis by baculovirus-mediated expression of a mite neurotoxin gene. Nature, 352, 82–5.

    Article  PubMed  CAS  Google Scholar 

  • Waalwijk, G, Dullemans, A. and Maat, C. (1991) Construction of a bioinsecticidal rhizo-sphere isolate of Pseudomonas fluorescens. FEMS Microbiology Letters, 77, 257–64.

    Article  CAS  Google Scholar 

  • Walstad, J.D., Anderson, R.F. and Stambaugh, W.J. (1970) Effects of environmental conditions on two species of muscardine fungi (Beauveria bassiana and Metarhizium anisopliae). Journal of Invertebrate Pathology, 16, 221–6.

    Article  Google Scholar 

  • Walther, C, Zlotkin, E. and Rathmayer, W. (1976) Action of different toxins from the scorpion Androctonus australis on a locust nerve-muscle preparation. Journal of Insect Physiology, 22, 1187–94.

    Article  Google Scholar 

  • Whitford, M., Stewart, S., Kuzio, J. and Faulkner, P. (1989) Identification and sequence analysis of a gene encoding gp67, an abundant envelope glycoprotein of the baculovirus Autographa californica nuclear polyhedrosis virus. Journal of Virology, 63, 1393–9.

    PubMed  CAS  Google Scholar 

  • Wood, H.A. and Granados, R.R. (1991) Genetically engineered baculoviruses as agents for pest control. Annual Reviews of Microbiology, 45, 69–87.

    Article  CAS  Google Scholar 

  • Zelazny, B., Lolong, A. and Crawford, A.M. (1990) Introduction and field comparison of baculovirus strains against Oryctes rhinoceros (Coleoptera: Scarabaeidae) in the Maldives. Environmental Entomology, 19, 1115–21.

    Google Scholar 

  • Zimmermann, G. (1982) Effect of high temperatures and artificial sunlight on the viability of conidia of Metarhizium anisopliae. Journal of Invertebrate Pathology, 40, 36–40.

    Article  Google Scholar 

  • Zimmermann, G. (1986) Insect pathogenic fungi as pest control agents. Progress in Zoology, 32, 217–31.

    Google Scholar 

  • Zlotkin, E., Rochat, H., Kopeyan, C, Miranda, F. and Lissitzky, S. (1971) Purification and properties of the insect toxin from the venom of the scorpion Androctonus australis Hector. Biochemie, 53, 1073–7.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Possee, R.D., King, L.A. (1994). Molecular approaches to the design of biotic crop protection agents. In: Marshall, G., Walters, D. (eds) Molecular Biology in Crop Protection. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1248-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1248-2_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-412-54400-2

  • Online ISBN: 978-94-011-1248-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics