Skip to main content

Diffusion of electrolytes in hydrothermal systems: free solution and porous media

  • Chapter
Fluids in the Crust

Abstract

Metasomatic and metamorphic assemblages are generated during the long-term chemical evolution of rocks. According to present-day views, material transport by a fluid phase that fills a porous space is crucial to this process. Transfer of material by the fluid phase may be the result of both diffusion and infiltration (Korzhinskiy, 1970). Within any given system, transfer over relatively short distances and times is dominated by diffusion, irrespective of the presence of a convection component.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alekhin, Yu.V., Vakulenko, A.G. and Lakshtanov, L.Z. (1982a). Methods for studying transport phenomena during isothermal filtration into porous media. In Contr. to Physico-chemical Petrology, X, pp. 45–68. Nauka Press, Moscow (in Russian).

    Google Scholar 

  • Alekhin, Yu.V., Vakulenko, A.G. and Lakshtanov, L.Z. (1982b). Filtration effect and its bearing on the convection and diffusion mass transfer in porous media. In Dynamic Models in Physical Geochemistry, pp. 144–62. Nauka Press, Novosibirsk (in Russian).

    Google Scholar 

  • Alekhin, Yu.V., Zharikov, V.A., Ivanova, L.I., and Lakshtanov, L.Z. (1984). Electro-surface properties of natural and synthetic porous media under hydrothermal conditions. Dokl. Acad. Nauk SSSR, 274, N6, pp. 1454–7 (in Russian).

    Google Scholar 

  • Anderson, D.E. (1981). Diffusion in electrolyte mixtures. In Reviews in Mineralogy (eds Lasaga A.C. & Kirkpatrick R.J.), vol. 8 (Kinetics of Geochemical Processes), chapter 6, pp. 211–60.

    Google Scholar 

  • Applin K.R. and Lasaga A.C. (1984). The determination of math, math, and math tracer diffusion coefficients and their application to diagenetic flux calculations. Geochim. Cosmochim. Acta, 48, N10, pp. 2151–62.

    Article  Google Scholar 

  • Applin, K.R. (1987). The diffusion of dissolved silica in dilute aqueous solution. Geochim. Cosmochim. Acta, 51, pp. 2147–51.

    Article  Google Scholar 

  • Balashov, V.N. and Zaraisky, G.P. (1982). Experimental and theoretical investigation of thermal decompaction of rocks on heating. In Contr. to Physicochemical Petrology, X, pp. 69–109. Nauka Press, Moscow (in Russian).

    Google Scholar 

  • Balashov, V.N., Zaraisky, G.P., Tikhomirova, V.N. and Postnova, L.E. (1983). Diffusion of rock-forming components in pore solutions at 200°C and 1 kbar. Geokhimia, 1, pp. 30–42 (in Russian).

    Google Scholar 

  • Balashov, V.N. (1992). Diffusion on mass transfer in hydrothermal systems. Ph.D. thesis, Moscow (in Russian).

    Google Scholar 

  • Dudziak, K.H. and Franck, E.U. (1966). Messungen der Viscositat des Wassers bis 560°C und 3500 bar. Ber. Bunsenges. Physik. Chem., 70, N9/10, pp. 1120–8.

    Google Scholar 

  • Erdey-Gruz (1974). Transport Phenomena in Aqueous Solutions, 592 pp. Akademiai Kiado, Budapest.

    Google Scholar 

  • Fell, C.J.D. and Hutchison, H.P. (1971). Diffusion coefficients for sodium and potassium chlorides in water at elevated temperatures. J. Chem. Eng. Data, 16, N4, pp. 427–9.

    Article  Google Scholar 

  • Franck, E.U. (1956). Hochverdichter Wasserdampf III. Ionendissoziation von KCl, KOH und H20 in uberkritischem wasser. Zeitschr.fur Physik. Chemie, 8, pp. 192–206.

    Article  Google Scholar 

  • Frantz, J.D. and Marshall, W.L. (1982). Electrical conductances and ionization constants of calcium chloride and magnesium chloride in aqueous solutions at temperatures to 600°C and pressures to 4000 bars. Amer. J. Sci., 282, pp. 1666–93.

    Article  Google Scholar 

  • Frantz, J.D. and Marshall, W.L. (1984). Electrical conductances and ionization constants of salts, acids and bases in supercritical aqueous fluids. I. Hydrochloric acid from 100°C to 700°C and at pressures to 4000 bars. Amer. J. Sci., 284, pp. 651–67.

    Article  Google Scholar 

  • Hart, S.R. (1981). Diffusion compensation in natural silicates. Geochim. Cosmochim. Acta, 45, N3, p. 279.

    Article  Google Scholar 

  • Helfferich, F. (1959). Ionenaustauscher (Grundlagen Struktur Herstellung Theorie). Verlag Chemie GMBH Weiheim Bergstr.

    Google Scholar 

  • Helgeson, H.C. and Kirkham, D.H. (1974). Theoretical prediction of the thermodynamic behavior of aqueous electrolytes at high pressures and temperatures. I. Summary of the thermodynamic-electrostatic properties of the solvent. Amer. J. Sci., 274, pp. 1089–1198.

    Article  Google Scholar 

  • Helgeson, H.C., Kirkham, D.H. and Flowers, G.C. (1981). Theoretical prediction of the thermodynamic behavior of aqueous electrolytes at high pressures and temperatures. IV. Calculation of activity coefficients, osmotic coefficients and apparent molal and standard and relative partial molal properties to 600°C and 5 kb. Amer. J. Sci., 281, N10, pp. 1249–1516.

    Article  Google Scholar 

  • Hofmann, A.W., Giletti, B.J., Yoder, H.S. Jr., Yund, RA. (eds) (1974) Geochemical Transport and Kinetics. Carnegie Institution of Washington, publication 634.

    Google Scholar 

  • Ivanova, L.I. (1989). Electrosurface properties of aluminium and silicon oxides in electrolyte solutions over a wide temperature range. Ph.D. thesis, Leningrad (in Russian).

    Google Scholar 

  • Korzhinskiy, D.S. (1970). Theory of Metasomatic Zoning. Clarendon Press, Oxford.

    Google Scholar 

  • Labotka, T.C. (1991). Chemical and physical properties of fluids. In Reviews in Mineralogy (ed. Kernick, D.H.), vol. 26 (Contact Metamorphism), pp. 43–104.

    Google Scholar 

  • Lakstanov, L.Z. and Kopylov, P.N. (1985). Separation of electrolyte solutions upon filtration through porous media. Khimia i Tekhnologia Vody, 7, N4, pp. 8–11 (in Russian).

    Google Scholar 

  • Marshall, W.L. and Franck, E.U. (1981). Ion product of water substance, 0–1000°C, 1–10000 bars: new international formulation and its background. J. Phys. and Chem. Ref. Data, 10, N 2, pp. 295–304.

    Article  Google Scholar 

  • Miller, D.G. (1966). Application of irreversible thermodynamics to electrolyte solutions. I. Determination of ionic transport coefficients l ij for isothermal vector transport processes in binary electrolyte systems. J. Phys. Chem., 70, N8, pp. 2639–59.

    Article  Google Scholar 

  • Nigrini, A. (1970). Diffusion in rock alteration systems. I. Prediction of limiting equivalent ionic conductances at elevated temperatures. Amer. J. Sci., 269, pp. 65–85.

    Article  Google Scholar 

  • Oelkers, E.H. and Helgeson, H.C. (1988a). Calculation of thermodynamic and transport properties of aqueous species at high pressures and temperatures: Aqueous tracer diffusion coefficients of ions to 1000°C and 5 kb. Geochim. Cosmochim. Acta, 1, pp. 63–85.

    Article  Google Scholar 

  • Oelkers, E.H. and Helgeson, H.C. (1988b). Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: dissociation constants for supercritical alkali metal halides at temperatures from 400° to 800°C and pressures from 500 to 4000 bars. J. Phys. Chem., 92, pp. 1631–9.

    Article  Google Scholar 

  • Plyasunov, A.V. (1988). Estimation of dissociation constants for symmetrical electrolytes on the basis of stoichiometric activity coefficients. Zhurn.Phis. Khimii, LXII, N3, pp. 622–5 (in Russian).

    Google Scholar 

  • Plyasunov, A.V. (1989). Experimental and thermodynamic investigation of the solubility of zinc oxide in alkali and cloride solutions to 600°C and 1 kbar. Ph.D. thesis, Institute of Experimental Mineralogy, Chernogolovka (in Russian).

    Google Scholar 

  • Quist, A.S. and Marshall, W.L. (1965). Assignment of limiting equivalent conductances for single ions to 400°C. J. Phys. Chem., 69, N9, pp. 2984-7.

    Article  Google Scholar 

  • Quist, A.S. and Marshall, W.L. (1968). Electrical conductances of aqueous sodium chloride solutions from 0 to 800°C and at pressures to 4000 bars. J. Phys. Chem., 72, N2, pp. 684–703.

    Article  Google Scholar 

  • Quist, A.S. and Marshall, W.L. (1969). The electrical conductances of some alkali metal halides in aqueous solutions from 0 to 800°C and at pressures to 4000 bars. J. Phys. Chem., 73, pp. 987–965.

    Article  Google Scholar 

  • Ritzert, G. and Franck, E.U. (1968). Elektrische Leitfahigkeit wassriger Losungen bei hohen Temperaturen und Drucken, I. KCl, BaCl2, Ba(OH)2, und MgSO4 bis 750°C und 6 Kbar. Ber. Bunsenges. Physik. Chem., 72, pp. 798–807.

    Google Scholar 

  • Robinson, R.A. and Stokes, R. (1959). Electrolyte Solutions. Butterworths, London.

    Google Scholar 

  • Shante, V.K.S. and Kirkpatrik, S. (1971). An introduction to percolation theory. Adv. Phys., 20, N85, pp. 325–57.

    Article  Google Scholar 

  • Shchukin, Eu.D., Pertsov, A.V. and Amelina, E.A. (1982). Handbook of Colloidal Chemistry. Moscow Univer. Press, Moscow (in Russian).

    Google Scholar 

  • Wishaw, B.F. and Stokes, R.H. (1954). The diffusion coefficients and conductances of some concentrated electrolyte solutions at 25°C. J. Amer. Ch. Soc., 76, pp. 2065–71.

    Article  Google Scholar 

  • Zaraisky, G.P., Zharikov, V.A., Stoyanovskaya, F.M. and Balashov, V.N. (1986). An Experimental Investigation of Bimetasomatic Skarn Formation. Nauka Press, Moscow (in Russian).

    Google Scholar 

  • Zonov, S.V., Zaraisky, G.P. and Balashov, V.N. (1989). The effect of thermal decompaction on granite permeability, with lithostatic pressure being slightly in excess of fluid pressure. Dokl. Akad. Nauk SSSR, 307, N1, pp. 191–5 (in Russian).

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Balashov, V.N. (1994). Diffusion of electrolytes in hydrothermal systems: free solution and porous media. In: Shmulovich, K.I., Yardley, B.W.D., Gonchar, G.G. (eds) Fluids in the Crust. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1226-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1226-0_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4536-0

  • Online ISBN: 978-94-011-1226-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics