Skip to main content

Part of the book series: Microwave Technology Series ((MRFT,volume 8))

Abstract

By the MIC synthesis we mean a complex of mathematical procedures with the aim to choose and arrange one system from theoretical models of microwave elements, a microwave integrated circuit, in order that an electric circuit could be obtained, able to perform the electric function required (amplification, oscillation, mixing, multiplication) in the desired frequency region of the microwave spectrum of electromagnetic waves with the preliminarily determined characteristics or with optimum characteristics established on the basis of a preliminarily chosen criterion. The key point of the synthesis is arranging and solving the system of mathematical equations expressing relationship between characteristics of elements and circuit quantities on the one hand and external quantities affecting the given circuit by means of its input and output lines on the other hand. The synthesis also includes checking of the MIC proposed according to the stability criterion for the given operation regime, estimation of the effect of relationship between the elements on electric characteristics and stability of the whole MIC and optimization of the MIC characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References 4.1

  • Aprille T.J., Trick T.N. (1972a) A computer algorithm to determine the steady-state response of nonlinear oscillators, IEEE Trans. Circuit Theory, vol. CT-19, 7, pp. 354–360.

    Article  MathSciNet  Google Scholar 

  • Aprille T.J., Trick T.N. (1972b) Steady-state analysis of nonlinear circuits with periodic inputs, Proc. IEEE, vol. 60, 1, pp. 108–115.

    Article  MathSciNet  Google Scholar 

  • Baucells J., Mediavilla A., Tazon A. (1988) Nonlinear analysis, in GaAs MESFET Circuit Design, R. Soares, ed., Artech House, Boston.

    Google Scholar 

  • Camacho-Peñalosa C. (1983) Numerical steady-state analysis of nonlinear microwave circuits with periodic excitation, IEEE Trans. Microwave Theory Tech., vol. MTT-31, 9, pp. 724–730.

    Article  Google Scholar 

  • Chu T.S., Itoh T. (1986) Generalized scattering matrix method for analysis of cascaded and offset microstrip step discontinuities, IEEE Trans. Microwave Theory Tech., vol. MTT-34, 2, pp. 280–284.

    Google Scholar 

  • Chua L.O., Lin P. (1975) Computer-Aided Analysis of Electronic Circuits: Algorithms and Computational Techniques, Prentice-Hall, Engle-wood Cliffs, NJ.

    MATH  Google Scholar 

  • Collin R.E. (1966) Foundations of Microwave Engineering, McGraw-Hill, New York, pp. 170–182.

    Google Scholar 

  • Colon F.R., Trick T.N. (1973) Fast periodic steady-state analysis for largesignal electronic circuits, IEEE J. Solid-State Circuits, vol. SC-8,8, pp. 260–269.

    Article  Google Scholar 

  • Desoer C.A., Kuh E.S. (1969) Basic Circuit Theory, McGraw-Hill, New York.

    Google Scholar 

  • Director S.W. (1971) A method for quick determination of the periodic steady-state in nonlinear networks, Allerton Conf. Circuit Syst. Theory, pp. 131–139.

    Google Scholar 

  • Director S.W., Current K. W. (1976) Optimization of forced nonlinear periodic circuits, IEEE Trans. Circuits Syst., vol. CAS-23,6, pp. 329–355.

    Article  Google Scholar 

  • Eesof Inc. (1985) Non-linear circuit analysis comes to microwave, Microwave J., vol. 28,8, pp. 153–156.

    Google Scholar 

  • El Rabaie S., Fusco V.F., Stewart C. (1988) Harmonic balance evaluation of nonlinear microwave circuits — A tutorial approach, IEEE Trans. Education, vol. 31, 3, pp. 181–192.

    Article  Google Scholar 

  • Filicori F., Naldi C. (1983) An algorithm for the periodic or quasi-periodic steady-state analysis of nonlinear circuits. IEEE International Symposium on Circuits and Systems, pp. 366–369.

    Google Scholar 

  • Gilmore R. (1986) Nonlinear circuit design using the modified harmonic balance algorithm, IEEE Trans. Microwave Theory Tech., vol. MTT-34,12, pp. 1294–1307.

    Article  MathSciNet  Google Scholar 

  • Gilmore R.G., Kiehne R., Rosenbaum F. J. (1985) Circuit design to reduce 3rd order intermodulation distortion in FET amplifiers, IEEE MTS-S Digest, pp. 413–416.

    Google Scholar 

  • Gilmore R.J., Steer M.B. (1991) Nonlinear circuit analysis using the method of harmonic balance — A review of the art. Part I. Introductory concepts, Int. J. Microwave and Millimeter-Wave Computer-Aided Eng., vol. 1,1, pp. 22–37. Part II. Advanced concepts, Int. J. Microwave and Millimeter-Wave Computer-Aided Eng., vol. 2, 2, pp. 159-80.

    Article  Google Scholar 

  • Gupta K.C., Garg R., Chadha R. (1981) Computer-Aided Design of Microwave Circuits, Artech House, Inc., Dedham.

    Google Scholar 

  • Hicks R.G., Khan P.J. (1980) Numerical technique for determining pumped nonlinear device waveforms, Electron. Lett., vol. 16, 375–376.

    Article  Google Scholar 

  • Hicks R.G., Khan P.J. (1982a) Numerical analysis of nonlinear solid-state device excitation in microwave circuits, IEEE Trans. Microwave Theory Tech., vol. MTT-30,3, pp. 251–259.

    Article  Google Scholar 

  • Hicks R.G., Khan P.J. (1982b) Numerical analysis of subharmonic mixers using accurate and approximate models, IEEE Trans. Microwave Theory Tech., vol. MTT-30,12, pp. 2113–120.

    Article  Google Scholar 

  • Hu Y., Molier J.C., Obregon J. (1986) A new method of third-order intermodulation reduction in non-linear microwave systems, IEEE Trans. Microwave Theory Tech., vol. MTT-34,2, pp. 245–250.

    Google Scholar 

  • Hwang D., Itoh T. (1986) Large-signal modeling and analysis of GaAs MESFET, Proc. 16th European Microwave Conf., pp. 189–194.

    Google Scholar 

  • Jastrzebski A.K., Sobhy M.I. (1984) Analysis of non-linear microwave circuits using state-space approach, Proc. IE4EE Int. Symp. on Circuits and Systems, Montreal, vol. 2, pp. 1119–1122.

    Google Scholar 

  • Javed A., Goud P.A., Syrett B.A. (1977) Analysis of microwave feedforward amplifier using Volterra series representation, IEEE Trans. Commun., vol. 25, pp. 355–360.

    Article  Google Scholar 

  • Kerns D.M., Beatty R.W. (1969) Basic Theory of Waveguide Junctions and Introductory Microwave Network Analysis, Pergamon Press, Oxford.

    Google Scholar 

  • Kerr A.R. (1975) A technique for determining the local oscillator wave-forms in a microwave mixer, IEEE Trans. Microwave Theory Tech., vol. MTT-23, 10, pp. 828–831.

    Article  MathSciNet  Google Scholar 

  • Kerr A.R. (1979) Noise and loss in balanced and subharmonically pumped mixers: part 1-theory, IEEE Trans. Microwave Theory Tech., vol. MTT-27,12, pp. 938–950.

    Article  Google Scholar 

  • Kneppo I., Fabian J. (1991) Inversion Scattering Matrix Method for Scattering to Transmission Matrix Transformation, Elektrotechnický časopis, 42, 11–12, pp. 626–628.

    Google Scholar 

  • Lambranianou G.M., Aitchison C.S. (1977) Optimization of third-order amplifier using Volterra seriess analysis, IEEE Trans. Microwave Theory Tech., vol. MTT-33, 12, pp. 1395–1403.

    Google Scholar 

  • Minasian R.A. (1980) Intermodulation distortion analysis of MESFET amplifiers using the Volterra series representation, IEEE Trans. Microwave Theory Tech., vol. MTT-28, 1, pp. 1–8.

    Article  Google Scholar 

  • Minasian R.A. (1981) Volterra series analysis of MESFET mixers, Int. J. Electron., vol. 50, 3, pp. 215–219.

    Article  Google Scholar 

  • Monaco V.A., Tiberio P. (1970) On the transformation of a lumped element linear network into a circuit composed of multiports, Alta Freq., vol. 39, 11, pp. 1013–1014.

    Google Scholar 

  • Monaco V.A., Tiberio P. (1974) Computer-aided analysis of microwave circuits, IEEE Trans. Microwave Theory Tech., vol. MTT-22, 3, pp. 249–263.

    Article  Google Scholar 

  • Nagel L.W., Pederson D.O. (1973) SPICE (Simulation Program with Integrated Circuit Emphasis), Memorandum ERL M382, University of California, Electronics Research Laboratory.

    Google Scholar 

  • Nakhla M.S., Branin F.H. (1977) Determining the periodic response of nonlinear systems by a gradient method, Circuit Theory Appl., vol. 5, pp. 255–273

    Article  MATH  Google Scholar 

  • Nakhla M.S., Vlach J. (1976) A piecewise harmonic balance technique for determination of periodic response of nonlinear systems, IEEE Trans. Circuits Syst., vol. CAS-23, 2, pp. 85–91.

    Article  Google Scholar 

  • Norenkov I.P., Yevstifeyev Y.A., Manichev V.B. (1987) A steady-state analysis method for multiperiodic electronic circuit, Radiotekhnika, 11, pp. 86–9.

    Google Scholar 

  • Obregon J. (1985) Non-linear analysis and design of microwave circuits, European Microwave Conf., Paris, pp. 1089–93.

    Google Scholar 

  • Overfelt P.L., White D.J. (1989) Alternate forms of the generalized composite scattering matrix, IEEE Trans. Microwave Theory Tech., vol. MTT-37, 8, pp. 1267–1268.

    Article  Google Scholar 

  • Pospí š il J. (1986) Matrix Decompositions and some their Applications in Network Theory, Publications of Technical and Scientific Papers of the Technical University in Brno, Brno.

    Google Scholar 

  • Redheffer R. (1962) On the relation of transmission-line theory to scattering and transfer, J. Math. Phys., vol. 41, PP. 1–41.

    MathSciNet  MATH  Google Scholar 

  • Rizzoli V., Cecchetti C., Lipparini A., Mastri F. (1988) General-purpose harmonic balance analysis of nonlinear microwave circuits under multitone excitation, IEEE Trans. Microwave Theory Tech., vol. MTT-36, 12, pp. 1650–1660.

    Article  Google Scholar 

  • Simonyi K. (1963) Foundations of Electrical Engineering, Pergamon Press, Oxford, pp. 327–417.

    MATH  Google Scholar 

  • Skelboe S. (1980) Computation of the periodic steady-state response of nonlinear networks by extrapolation methods, IEEE Trans. Circuits and Systems, vol. CAS-27, pp. 161–175.

    Article  MathSciNet  Google Scholar 

  • Skelboe S. (1982) Time-domain steady-state analysis of nonlinear electrical systems, Proc. IEEE. vol. 70., 10, pp. 1210–1228.

    Article  Google Scholar 

  • Sobhy M.I., Jastrzebski A.K. (1985) Direct integration methods of nonlinear microwave circuits, Proc. 15th European Microwave Conf., pp. 1110–1118.

    Google Scholar 

  • Steer M.B., Chang C.-R., Rhyne G.W. (1991) Computer-aided analysis of nonlinear microwave circuits using frequency domain nonlinear analysis techniques; The state of the art, Int. J. of Microwave and Millimetre-Wave Computer-Aided Eng., vol. 1, 2, pp. 181–200.

    Article  Google Scholar 

  • Weinberg L. (1966) Scattering Matrix and Transfer Scattering Matrix, in Amplifiers, R. F. Shea, Ed., McGraw-Hill, New York.

    Google Scholar 

  • Weiner D.D., Spina J.F. (1980) Sinusoidal Analysis and Modeling of Weakly Nonlinear Circuits, Van Nostrand Reinhold Co., New York.

    Google Scholar 

References 4.2

  • Alseyab S.A. (1982) A Novel Class of Generalized Chebyshev Low-Pass Prototype for Suspended Substrate Stripline Filters. IEEE Trans. on MTT-S, Vol. 30, No. 9, pp. 1341–1347.

    Article  Google Scholar 

  • Alseyab S.A., Ashoor N. (1986) Element values of a generalized Chebyshev prototype filter for suspended subtrate stripline, Int. J. Electronics, Vol. 60, No. 4, pp. 439–449.

    Article  Google Scholar 

  • Atwater H.A. (1983) Microstrip reactive circuit elements, IEEE Trans. on MTT-S, Vol. 31, No. 6, pp. 488–491.

    Article  Google Scholar 

  • Bezou š ek P. et al. (1977) Design of MIC — part B, Technical Note 103L2295, ÚVR Opočínek, CSFR.

    Google Scholar 

  • Gupta C. (Dec. 1979) Design of Parallel Coupled Line Filter with Discontinuity Compensation in Microstrip, Microwave Journal, pp. 39–57.

    Google Scholar 

  • Levy R., Lind L.F. (Feb. 1968) Synthesis of Symmetrical Branch-Guide Directional Coupler, IEEE Trans. on MTT, Vol. 16, No. 2, pp. 80–89.

    Article  Google Scholar 

  • Matthaei G.L., Young L., Jones E.M.T. (1964) Microwave Filters, Impedance-Matching Networks and Coupling Structures, McGraw-Hill Book Company.

    Google Scholar 

  • Ou W.P. (1975) Design Equations for an Interdigitated Directional Coupler, IEEE Trans. on MTT-S, Vol. 23, No. 2, pp. 253–255.

    Article  Google Scholar 

  • Shelton J.P., Mosko J.A. (1966) Synthesis and design of wideband equal-ripple TEM directional couplers and fixed phase shifters, IEEE Trans. on MTT, Vol. 14, No. 10, pp. 462–473.

    Article  Google Scholar 

References 4.3

  • Arden J. (June 1976) The Design, Performance and Application of the NEC V244 and V388 GaAs FETs, Application Note, California Eastern Laboratories INC, pp. 59.

    Google Scholar 

  • Bezoušek P., Tubl R. (Aug. 1989) Microwave broadband integrated detector (in Czech), Slaboproudy obzor, Vol. 50, No. 8, pp. 388–393.

    Google Scholar 

  • Carbin H. (Feb. 1978) A New Method of Broad-Band Equalization Applied to Microwave Amplifiers, IEEE Trans. on MTT, Vol. 27, pp. 93–98.

    Google Scholar 

  • Euberg J. (Sept. 1974) Simultaneous Input Power and Noise Optimization Using Feedback, 4-th European Microwave Conference, Montreaux, pp. 385–389.

    Google Scholar 

  • Hartman K. (Oct. 1973) Changes of the Four Noise Parameters Due to General Changes of Linear Two Port Circuits, IEEE Trans. on Elect. Dev., Vol. 20, pp. 874–877.

    Article  Google Scholar 

  • Johnson K.M. (March 1979) Large Signal GaAs MESFET Oscilator Design, IEEE Trans. on MTT, Vol. 27, pp. 217–227.

    Article  Google Scholar 

  • Levy R., Lind L.F. (Feb. 1968) Synthesis of Symmetrical Branch-Guide Directional Coupler, IEEE Trans. on MTT, Vol. 16, No. 2, pp. 80–89.

    Article  Google Scholar 

  • Lusack J., Perlow S., Perlman B.S. (Dec. 1974) Automatic Load Contour Mapping for Microwave Power Transistors, IEEE Trans. on MTT, Vol. 22, pp. 1146–1152.

    Google Scholar 

  • Matthaei G.L., Young L., Jones E.M.T. (1964) Microwave filters, McGraw-Hill Book Company, New York.

    Google Scholar 

  • Minisian R. (Jan. 1980) Intermodulation distortion analysis of MESFET amplifiers using the Voltera series representation, IEEE Trans. on MTT, Vol. 28, pp. 1–8.

    Article  Google Scholar 

  • Mitsui Y., Nakatami M., Mitsui S. (Dec. 1977) Design of GaAs MES-FET Oscillator Using Large-Signal S-parameters, IEEE Trans. on MTT, Vol. 25, pp. 1981–1984.

    Article  Google Scholar 

  • Niclas K. (June 1983) On Theory and Performance of Solid State Microwave Distributed Amplifiers, IEEE Trans. on MTT, Vol. 31, pp. 447–456.

    Article  Google Scholar 

  • Niclas K. (Aug. 1983a) On Noise in Distributed Amplifiers at Microwave Frequencies, IEEE Trans. on MTT, Vol. 31, pp. 661–668.

    Article  Google Scholar 

  • Shelton J.P., Mosko J.A. (Oct. 1966) Synthesis and design of wideband equal-ripple TEM directional couplers and fixed phase shifters, IEEE Trans. on MTT, Vol. 14, No. 10, pp. 462–473.

    Article  Google Scholar 

  • Vendelin G. (May 1975) Feedback Effects on the Noise Performance of GaAs MESFETs, MTT-s Integrated Microwave Symposium Digest, Palo Alto, pp. 324–326.

    Google Scholar 

  • Wienert F. (1968) Scattering parameters speed design of high frequency transistor circuits, HP Application Note 95, pp. 2.1–11.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kneppo, I., Fabian, J. (1994). Basic Circuits. In: Microwave Integrated Circuits. Microwave Technology Series, vol 8. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1224-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1224-6_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4535-3

  • Online ISBN: 978-94-011-1224-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics