Skip to main content

Analysis of Passive Circuit Elements

  • Chapter
Microwave Integrated Circuits

Part of the book series: Microwave Technology Series ((MRFT,volume 8))

  • 234 Accesses

Abstract

In the microwave incircuits (MICs) special types of lines are used that, in general, are formed by means of diverse configurations of conducting strips on different substrates. The latter are represented by various types of lines such as microstrip, coplanar, slotlines or transmission lines on suspended or multi-layer substrates as well as coupled lines. For some important types of lines accurate solutions for quasi-static approximations were obtained, whereby the line’s dispersion was determined with the use of a series of numerical methods that for the purpose of computer aided design can be approximated by closed relationships and vice versa the relationships for the synthesis can also be obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References 2.1

  • Bryant T.G., Weiss J.A. (1968) Parameters of Microstrip Transmission Lines and of Coupled Pairs of Microstrip Lines, IEEE Trans. Microwave Theory Tech., MTT-16, 12, pp. 1021–1027.

    Article  Google Scholar 

  • Cohn S.B. (1969) Slotline on a Dielectric Substrate, IEEE Trans. Microwave Theory Tech., MTT-17, 10, pp. 768–78.

    Article  Google Scholar 

  • Garg R., Gupta K.C. (1976) Expression for Wavelength and Impedance of Slotline, IEEE Trans. Microwave Theory Tech., MTT-24, 8, p. 532.

    Article  Google Scholar 

  • Ghione G., Naldi C.U. (1987) Coplanar Waveguides for MMIC Applications: Effect of Upper Shielding, Conductor Backing, Finite-Extent Ground Planes, and Line-to-Line Coupling, IEEE Trans. Microwave Theory Tech., MTT-35, 3, pp. 260–267.

    Article  Google Scholar 

  • Green H.E., (1965) The Numerical Solution of Some Important Transmission Line Problems, IEEE Trans. Microwave Theory Tech., MTT-13, pp. 676–692.

    Google Scholar 

  • Gupta K.C., Garg R., Bahl I. J. (1979) Microstrip Lines and Slotlines, Dedham, Massachusetts: Artech House.

    Google Scholar 

  • Hammerstadt E., Jensen O. (1980) Accurate Models for Microstrip Computer-Aided Design, IEEE MTT-S Int. Symp. Dig., Washington, D.C., pp. 407–409.

    Google Scholar 

  • Harrington R.F. (1968) Field computation by moment methods, Mac-millan, New York.

    Google Scholar 

  • Hoefer W.J.R. (1985) The Transmission-Line Matrix Method — Theory and Applications, IEEE Trans. Microwave Theory Tech., MTT-33, 10, pp. 882–893.

    Article  Google Scholar 

  • Hoffman R.K. (1983) Integrierte Mikrowellenschaltungen, Springer-Verlag, Berlin Heidelberg New York Tokyo.

    Book  Google Scholar 

  • Jansen R.H. (1978) High-Speed Computation of Single and Coupled Microstrip Parameters Including Dispersion, High-Order Modes, Loss and Finite Strip Thickness, IEEE Trans. Microwave Theory Tech., MTT-26, 1, pp. 78–82.

    Google Scholar 

  • Jansen R.H. (1979) Unified User Oriented Computation of Shielded, Covered and Open Planar Microwave and Millimetre Wave Transmission Line Characteristics, Microwave, Optics and Acoustics, 3,1, pp. 14–22.

    Article  Google Scholar 

  • Jansen R.H. (1983) Kirschning M., Arguments and an Accurate Model for the Power-Current Formulation of Microstrip Characteristic Impedance, AEÜ, Band 37, Heft 3/4, pp. 108–12.

    Google Scholar 

  • Jansen R.H. (1985) The Spectral-Domain Approach for Microwave Integrated Circuits, IEEE Trans. Microwave Theory Tech., MTT-33, 10, pp. 1043–56.

    Article  Google Scholar 

  • Johns P.B., Beurle R.L. (1971) Numerical Solution of 2-dimensional Scattering Problems Using a Transmission-Line Matrix, Proc. Inst. Elect. Eng., 118,9, pp. 1203–8.

    Article  Google Scholar 

  • Kirschning M., Jansen R.H. (1982) Accurate Model for Effective Dielectric Constant of Microstrip with Validity up to Millimetre-wave Frequencies, Electronic Letters, 18,6, pp. 272–3.

    Article  Google Scholar 

  • Kirschning M., Jansen R.H. (1984) Accurate Wide-Range Design Equations for the Frequency-Dependent Characteristic of Parallel Coupled Microstrip Lines, IEEE Trans. Microwave Theory Tech., MTT-32, 1, pp. 83–90.

    Article  Google Scholar 

  • Kitazawa T., Hayashi Y., Suzuki M. (1976) A Coplanar Waveguide with Thick Metal-Coating, IEEE Trans. Microwave Theory Tech., MTT-24, 9, pp. 604–8.

    Article  Google Scholar 

  • Kowalski G., Pregla R. (1971) Dispersion characteristics of shielded microstrips with finite thickness, AEÜ, V.2S, No. 4, pp. 193–6.

    Google Scholar 

  • March S. (1981) Microstrip Packing: Watch The Last Step, Microwaves, 12, pp. 83, 84, 87, 88, 92, 94.

    Google Scholar 

  • Mirshekar-Syahkal D., Davies J.B. (1982) An Accurate, Unified Solution to Various Fin-Line Structures, of Phase Constant, Characteristic Impedance, and Attenuation, IEEE Trans. Microwave Theory Tech., MTT-30, 11, pp. 1854–61.

    Article  Google Scholar 

  • Pantic Z., Mittra R. (1986) Quasi-TEM Analysis of Microwave Transmission Lines by the Finite-Element Method, IEEE Trans. Microwave Theory Tech., MTT-34, 11, pp. 1096–103.

    Article  Google Scholar 

  • Pramanick P., Bhartia P. (1985) Accurate Analysis Equations and Synthesis Technique for Unilateral Finlines, IEEE Trans. Microwave Theory Tech., MTT-33, 1, pp. 24–30.

    Article  Google Scholar 

  • Pramanick P., Bhartia P. (1985) Computer-Aided Design Models for Millimeter-Wave Finlines and Suspended-Substrate Microstrip Lines, IEEE Trans. Microwave Theory Tech., MTT-33, 12, pp. 1429–35.

    Article  Google Scholar 

  • Pramanick P., Bhartia P. (1986) A New Model for the Apparent Characteristic Impedance of Finned Waveguide and Finlines, IEEE Trans. Microwave Theory Tech., MTT-34, 12, pp. 1437–41.

    Article  Google Scholar 

  • Pramanick P., Mansour R.R., MacPhie R.H. (1987) Computer Aided Design Models for Unilateral Finlines with Finite Metalization Thickness and Arbitrarily Located Slot Width, IEEE MTT-S Int. Microwave. Symp. Dig., Las Vegas, pp. 703–6.

    Google Scholar 

  • Pucel R.A., Massé D.J., Hartwig C.P. (1968) Losses in Microstrip, IEEE Trans. Microwave Theory Tech., MTT-16, 6, pp. 342–350, correction MTT-16, 6, p. 1064.

    Article  Google Scholar 

  • Schmidt L.P., Itoh T. (1980) Spectral Domain Analysis of Dominant and Higher Modes in Finite, IEEE Trans. Microwave Theory Tech., MTT-28, 9, pp. 981–5.

    Article  Google Scholar 

  • Silvester P. (1968) TEM Properties of Microstrip Transmission Lines, Proc. IEE, Vol. 115, pp. 42–49.

    Google Scholar 

  • Schneider M.V. (1969) Microstrip Lines for Microwave Integrated Circuits, B.S.T.J., Vol. 48, pp. 1421–1444.

    Google Scholar 

  • Schneider M.V. (1969a) Dielectric Loss in Integrated Microwave Circuits, The Bell System Technical Journal, 48, pp. 2325–2332.

    Google Scholar 

  • Spielman B.E. (1977) Dissipation Loss Effects in Isolated and Coupled Transmission Lines, IEEE Trans. Microwave Theory Tech., MTT-25, 8, pp. 648–655.

    Article  Google Scholar 

  • Tomar R.S., Bhartia P. (1986) New Accurate Design Data for a Suspended Microstrip Line, Int. Journal of Inf. and MM Waves, 7, 9, pp. 1281–1295.

    Article  Google Scholar 

  • Tomar R.S., Bhartia P. (1987) New Quasi-Static Models for the Computer-Aided Design of Suspended and Inverted Microstrip Lines, IEEE Trans. Microwave Theory Tech., MTT-35, 4, pp. 453–457, correction MTT-35, 11, p. 1076.

    Article  Google Scholar 

  • Tomar R.S., Bhartia P. (1987a) Modeling the Dispersion in a Suspended Microstrip Line, IEEE-MTT-S Int. Microwave Symp. Dig., Las Vegas.

    Google Scholar 

  • Wheeler H.A. (1977) Transmission-line Properties of a Strip on a Dielectric Sheet on a Plane, IEEE Trans. Microwave Theory Tech., MTT-25, 8, pp. 631–647.

    Article  Google Scholar 

  • Worm S.B., Pregla R. (Feb. 1984) Hybrid. mode analysis of arbitrarily shaped planar microwave structures by method of lines, IEEE Trans. Microwave Theory Tech., MTT-32, pp. 191–196.

    Google Scholar 

References 2.2

  • Alexopoulos N.G., Jackson D.R., Katehi P.B. (1985) Criteria for Nearly Omnidirectional Radiation Patterns for Printed Antenas, AP-33, 2.

    Google Scholar 

  • Altschuler H.M., Oliner A.A. (1960) Discontinuities in the Center Conductor of Symetric Strip Transmission Line, IEEE Trans. Microwave Theory Tech., MTT-8, 5, pp. 328–339.

    Google Scholar 

  • Benedek P., Silvester P. (1972) Equivalent Capacitances for Microstrip Gaps and Steps, IEEE Trans. Microwave Theory Tech., MTT-20, 11, pp. 729–733.

    Article  Google Scholar 

  • Chadha R., Gupta R.C. (1982) Compensation of Discontinuities in Planar Transmission Lines, IEEE MTT-S Int. Microwave Symp. Dig., Dallas, pp. 308–310.

    Google Scholar 

  • Collin R.E. (1960) Field Theory of Guided Waves, McGraw-Hill Book Company, London.

    Google Scholar 

  • Douville R., James D. (1973) Experimental Study of Symmetric Mictrostrip Bends and Their Compensation, IEEE Trans. Microwave Theory Tech., MTT-26, 3, pp. 175–182.

    Google Scholar 

  • Easter B. The Equivalent Circuit of Some Microstrip Discontinuities, IEEE Trans. Microwave Theory Tech., MTT-23, 8, pp. 655–660.

    Google Scholar 

  • Gopinath A., Thompson A.F., Stephenson I.M. (1976) Equivalent Circuit Parameters of Microstrip Step Change in Width and Cross Junctions, IEEE Trans. Microwave Theory Tech., MTT-24, 3, pp. 142–144.

    Article  Google Scholar 

  • Gupta K.C., Garg R., Bahl I.J. (1979) Microstrip Lines and Slotlines, Artech House.

    Google Scholar 

  • Gupta K.C. (1979) Design of Parallel Coupled Line Filter with Discontinuity Compensation in Microstrip, Microwave Journal, pp. 39–57.

    Google Scholar 

  • Gupta K.C., Garg R., Chadha R. (1981) Computer Aided Design of Microwave Circuits, Artech House Inc..

    Google Scholar 

  • Hammerstadt E.O. (1975) Equations for Microstrip Circuit Design, 5th Europe Microwave Conf., Hamburg, pp. 268–271.

    Google Scholar 

  • Helard M., Citerne J., Picon O., Hanna V. (1985) Theoretical and Experimental Investigation of Fin-Line Discontinuities, IEEE Trans. Microwave Theory Tech., MTT-33, 10, pp. 994–1003.

    Article  Google Scholar 

  • Jansen R.H. (1985) The Spectral Domain Approach for Microwave Integrated Circuits, IEEE Trans. Microwave Theory Tech., MTT-33, 10, pp. 1043–1056.

    Article  Google Scholar 

  • Jansen R.H. (1984) Hybrid Mode Analysis of End Effects of Planar Microwave and Millimeter Wave Transmission Lines, Proc. Inst. Elect. Eng., 128, pp. 77–86.

    Google Scholar 

  • Jansen R.H., Koster N. (1975) Accurate Results on the End Effect of Single and Coupled Microstrip Lines for Use in Microwave Circuit Design, Electron. & Commun. (AET), 29, pp. 241–247.

    Google Scholar 

  • Jansen R.H. (1978) High-Speed Computation of Single and Coupled Microstrip Parameters Including Dispersion, High-order Modes, Loss and Finite Strip Thickness, IEEE Trans. Microwave Theory Tech., MTT-26, 1, pp. 78–82.

    Google Scholar 

  • Jansen R.H., Koster N. (1982) New Aspects Concerning the Definition of Microstrip Characteristic Impedance as a Function of Frequency, IEEE MTT-S Int. Microwave Symp. Dig., Dallas, 1982, pp. 305–307.

    Google Scholar 

  • Katehi P.B., Alexopoulos N.G. (1985) Frequency-Dependent Characteristics of Microstrip Discontinuities in Millimeter-Wave Integrated Circuits, IEEE Trans. Microwave Theory Tech., MTT-33, 10, pp. 1029–1035.

    Article  Google Scholar 

  • Kirschning M., Jansen R.H., Koster N. (1981) Accurate Model for Open End Effect of Microstrip Lines, Electronic Letters, 3,27, pp. 123–125.

    Article  Google Scholar 

  • Kirschning M., Jansen R.H. (1984) Accurate Wide-Range Design Equations for the Frequency-Dependent Characteristic of Parallel Coupled Microstrip Lines, IEEE Trans. Microwave Theory Tech., MTT-32, 1, pp. 83–90.

    Article  Google Scholar 

  • Knorr J.B., Saenz J. (1973) End Effect in Shorted Slot, IEEE Trans. Microwave Theory Tech., MTT-21, 9, pp. 579–80.

    Article  Google Scholar 

  • Knorr J.B. (1981) Equivalent Reactance of a Shorting Septum in a Fin-line: Theory and Experiment, IEEE Trans. Microwave Theory Tech., MTT-29, 11, pp. 1196–202.

    Article  Google Scholar 

  • Koster N., Jansen R.H. (1986) The Microstrip Step Discontinuity: A Revised Description, IEEE Trans. Microwave Theory Tech., MTT-34, 2, pp. 213–23.

    Article  Google Scholar 

  • Kvasil B. (1957) Teoretické základy techniky centimetrových vĺn, SNTL Praha.

    Google Scholar 

  • Miklin S.C., Smolitsky K.L. (1967) Approximate for Solution of Differential and Integral Equations, American Elsevier, New York.

    Google Scholar 

  • Pic E., Hoefer W. (1981) Experimental Characterization of Fin Line Discontinuities, IEEE MTT-S Int. Microwave Symp. Dig., New York, pp. 108–110.

    Google Scholar 

  • Schiavon G., Tognolati P., Sorrentino R. (1988) Fulwave Analysis of Coupled-Finline Discontinuities, IEEE MTT-S Int. Microwave Symp. Dig., New York, pp. 725–728.

    Google Scholar 

  • Silvester P., Benedek P. (1973) Microstrip Discontinuity Capacitances for Right-Angle Bends, T-junctions and Crossings, IEEE Trans. Microwave Theory Tech., MTT-21, 5, pp. 341–346.

    Article  Google Scholar 

  • Silvester P., Benedek P. (1972) Equivalent Capacitance of Microstrip Open Circuits, IEEE Trans. Microwave Theory Tech., MTT-20, 8, pp. 511–516.

    Article  Google Scholar 

  • Thompson A.F., Gopinath A. (1975) Calculation of Microstrip Discontinuity Inductances, IEEE Trans. Microwave Theory Tech., MTT-23, 8, pp. 648–654.

    Article  Google Scholar 

  • Webb K.J., Mittra R. (1985) Solution of the Finline Step-Discontinuity Problem Using the Generalized Variational Technique, IEEE Trans. Microwave Theory Tech., MTT-33, 10, pp. 1004–1010.

    Article  Google Scholar 

  • Zangh X., K. Kenneth (1988) Time-Domain Finite Difference Approach to the Calculation of the Frequency-Dependent Characteristics of Microstrip Discontinuities, IEEE Trans. Microwave Theory Tech., MTT-36, 12, pp. 1775–1787.

    Google Scholar 

References 2.31

  • Cabana D. (1983) A new Transmission Line Approach for Design Spiral Microstrip Inductors for Microwave Integrated Circuits, IEEE MTT-S Int. Microwave Symp. Dig., Boston, pp. 245–7.

    Google Scholar 

  • Caverly R. (1986) Characteristic Impedance of Integrated Circuit Band Wires, IEEE Trans. Microwave Theory Tech., MTT-34, 9, pp. 982–984.

    Article  Google Scholar 

  • Gupta K.C., Garg R., Chadha R. (1981) Computer Aided Design of Microwave Circuits, Artech House.

    Google Scholar 

  • Parisot M. (1984) Highly Accurate Design of Spiral Inductors for MMIC’s with Small Size and High Cut-off Frequency Characteristics, IEEE MTT-S Int. Microwave Symp. Dig., San Francisco, pp. 106–10.

    Google Scholar 

  • Pengelly R.S., Rickard D.C. (1977) Design, Measurement and Application of Lumped Elements up to Y-band, Proc. 7th European Microwave Conf., Copenhagen, pp. 460–4.

    Google Scholar 

  • Volman V.I. (1982) Spravočnik po rasčetu i konstruirovanii SVČ poloskovych ustrojstv, Radio i svjaz, Moskva.

    Google Scholar 

  • Wolff I., Knoppik N. (1974) Rectangular and Circular Microstrip Disc Capacitors and Resonators, IEEE Trans. Microwave Theory Tech., MTT-22, 10, pp. 857–64.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hrníčko, F., Pavel, M. (1994). Analysis of Passive Circuit Elements. In: Microwave Integrated Circuits. Microwave Technology Series, vol 8. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1224-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1224-6_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4535-3

  • Online ISBN: 978-94-011-1224-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics