Skip to main content

Optical fiber modulation techniques for single mode fiber sensors

  • Chapter
Optical Fiber Sensor Technology

Part of the book series: Optical and Quantum Electronics Series ((OISS,volume 1))

Abstract

In order to be able to implement the signal processing techniques discussed in Chapter 5 a means is required of measuring changes in one or more of the parameters describing the optical beam: amplitude, phase, direction and frequency of the light wave. Temporal modulation of one, or more, of these parameters enables information to be encoded onto or extracted from the optical wave. For example, optical communications systems often use amplitude modulation of the light to encode information combined with modulation of the optical frequency to enable multiplexing and demultiplexing of a number of different signals. In single mode fiber optic sensor systems we are generally using interferometry to transduce very high frequency electric field oscillations (1014–1015Hz in the visible) to intensity modulations (Chapter 7). Measurands then induce a change in the optical phase, frequency or polarization state of the beam. Optical fiber modulation techniques are therefore required to either encode information or extract information from the fiber guided beam.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ford, H. D. and Tatam, R. P. (1993) Narrow band wavelength division multiplexers using birefringent optical fibre. Optics Comm., 98, 151–158.

    Article  Google Scholar 

  2. White, B. J., Davis, J. P., Bobb, C., Krumboltz, H. D. and Larson, D. C. (1987) Optical fiber thermal modulator. J. Lightwave Technol., LT-5, 1169.

    Article  Google Scholar 

  3. Neumann, E.-G. (1988) Single-Mode Fibres: Fundamentals, Springer-Verlag, Berlin.

    Google Scholar 

  4. Hocker, G. B. (1979) Fiber-optic sensing of pressure and temperature. Appl. Optics, 18, 1445–8.

    Article  Google Scholar 

  5. Akhaven Leilabady, P., Jones, J. D. C. and Jackson, D. A. (1985) Interferometric strain measurement using optical fibres. Proc. SPIE, 486, 230.

    Google Scholar 

  6. Butter, C. B. and Hocker, G. B. (1978) Fibre optics strain gauge. Appl. Optics, 18, 2867.

    Article  Google Scholar 

  7. Davies, D. E. N. and Kingsley, S. A. (1974) Method of phase-modulating signals in optical fibres: application to optical-telemetry systems. Electron. Lett., 10, 21–22.

    Article  Google Scholar 

  8. Kingsley, S. A. (1975) Optical-fiber phase modulator. Electron. Lett., 11, 453–454.

    Article  Google Scholar 

  9. Jackson, D. A., Priest, R., Dandridge, A. and Tveten, A. B. (1980) Elimination of drift in a single-mode optical fiber interferometer using a piezoelectrically stretched coiled fiber. Appl. Optics, 19, 2926–9.

    Article  Google Scholar 

  10. Yariv, A. and Yeh, P. (1984) Optical Waves in Crystals, John Wiley, Chichester.

    Google Scholar 

  11. Nye, J. F. (1960) Physical Properties of Crystals, Clarendon Press, Oxford.

    Google Scholar 

  12. Digonnet, M. J. F. and Kim, B. Y. (1989) Fiber optic components, in Optical Fiber Sensors (eds. B. Culshaw and J. Dakin), Artech House, Chapter 7.

    Google Scholar 

  13. Martini, G. (1987) Analysis of a single-mode optical fibre piezoceramic phase modulator. Opt. Quant. Electron. 19, 179–190.

    Article  Google Scholar 

  14. Dakin, J. P., Wade, C. A. and Haji-Michael, C. (1985) A fibre optic serrodyne frequency translator based on a piezoelectrically-strained fibre phase shifter. IEE Proc., 132, Pt J, 287–290.

    Google Scholar 

  15. Nosu, K., Taylor, H. F., Rashleigh, S. C. and Weller, J. F. (1983) Acousto-optic phase modulator for single-mode fibres. Electron. Lett., 19, 605–607.

    Article  Google Scholar 

  16. Godil, A. A., Patterson, D. B., Heffner, B. L. et al. (1988) All-fiber acoustic optic phase modulators using zinc oxide films on glass fiber. J. Lightwave Technol., 6, 1586–1590.

    Article  Google Scholar 

  17. Jackson, D. A. and Bedborough, D. S. (1977) A digital electronic system for use in interferometry. J. Phys. E: Sci. Instrum., 11, 1121.

    Article  Google Scholar 

  18. Cheng, Y.-Y. and Wyant, J. C. (1985) Phase shifter calibration in phase-shifting interferometry. Appl. Optics, 24, 3049–3052.

    Article  Google Scholar 

  19. Czaplak, D. S., Rashleigh, S. C., Taylor H. F. and Weiler, J. F. (1986) Microbend fiber-optic phase shifter. J. Lightwave Technol., LT-4, 50–54.

    Article  Google Scholar 

  20. Zervas, M. N. and Giles, I. P. (1988) Optical-fiber phase modulator with enhanced modulation efficiency. Optics Lett., 13, 404–406.

    Article  Google Scholar 

  21. Rashleigh, S. C. (1983) Origins and control of polarization effects in single-mode fibers. J. Lightwave Technol., LT-1, 312–331.

    Article  Google Scholar 

  22. Birch, R. D., Payne D. N. and Varnham, M. P. (1982) Fabrication of polarisation maintaining fibre using gas phase etching. Electron. Lett., 18, 1036.

    Article  Google Scholar 

  23. Payne, D. N., Barlow, A. J. and Ramskov-Hansen J. J. (1982) Development of low-and high-birefringence optical fibres. J. Quant. Electron., QE-18, 477–487.

    Article  Google Scholar 

  24. Birch, R. D. (1987) Fabrication and characterisation of circularly birefringent helical fibres. Electron. Lett., 23, 150.

    Article  Google Scholar 

  25. Li, L., Quan J.-R. and Payne, D. N. (1986) Current sensors using highly birefringent bow-tie fibers. Electron. Lett., 22, 1142.

    Article  Google Scholar 

  26. Okoshi, T. (1985) Polarisation state control schemes for heterodyne or homodyne optical fiber communications. J. Lightwave Technol., LT-3, 1232–12327.

    Article  Google Scholar 

  27. Walker, N. G. and Walker, G. R. (1990) Polarisation control for coherent communications. J. Lightwave Technol., 8, 438–458.

    Article  Google Scholar 

  28. Ulrich, R. and Johnson, M. (1979) Single-mode fiber optical polarisation rotator. Appl. Optics, 18, 1857–1861.

    Article  Google Scholar 

  29. Lefevre, H. C. (1980) Single-mode fibre fractional wave devices and polarisation controllers. Electron. Lett., 16, 778–780.

    Article  Google Scholar 

  30. Okoshi, T., Fukaya, N. and Kikuchi, K. (1985) New polarisation control device: Rotatable fibre cranks. Electron. Lett., 21, 895–896.

    Article  Google Scholar 

  31. Matsumoto, T. and Kano, H. (1986) Endlessly rotatable fractional wave devices and polarisation controllers. Electron. Lett., 22, 895–896.

    Google Scholar 

  32. Johnson, M. (1979) In-line fibre optical polarisation transformer. Appl. Optics. 18, 1288–9.

    Article  Google Scholar 

  33. Kidoh, Y., Suematsu, Y. and Furuya, K. (1981) Polarisation control on output of single-mode optical fibres. IEEE J. Quantum Electron, QE-17, 991–994.

    Article  Google Scholar 

  34. Kubota, M., Oohara, T., Furuya, K. and Suematsu, Y. (1980) Electro-optical polarisation control on single-mode fibres. Electron. Lett., 16, 573.

    Article  Google Scholar 

  35. Granestrand, P. and Thylen, L. (1984) Active stabilisation of polarisation on a single mode fibre. Electron. Lett., 20, 365–366.

    Article  Google Scholar 

  36. Ulrich, R. (1979) Polarisation stabilisation on single-mode fibre. Appl. Phys. Lett., 35, 840–842.

    Article  Google Scholar 

  37. Ulrich, R. and Simon, A. (1979) Polarization optics of twisted single-mode fibres. Appl. Optics, 18, 2241–2251.

    Article  Google Scholar 

  38. Smith, A. M. (1980) Birefringence induced by bends and twists in single-mode optical fibre. Appl. Optics, 19, 2606–2611.

    Article  Google Scholar 

  39. Ulrich, R., Rashleigh, S. C. and Eickhoff, W. (1980) Bending-induced birefringence in single-mode fibres. Optics Lett., 5, 273–275.

    Article  Google Scholar 

  40. Ren, Z. B., Robert, P. and Paratte, P.-A. (1988) Temperature dependence of bend-and twist-induced birefringence fibre. Optics, Lett., 13, 62.

    Article  Google Scholar 

  41. Namihara, Y. (1985) Opto-elastic constant in single mode optical fibres. J. Lightwave Technol., LT-3, 1078–1083.

    Article  Google Scholar 

  42. Borrelli, N. F. and Miller, R. A. (1968) Determination of the individual strain-optic coefficients of glass by an ultrasonic technique. Appl. Optics, 7, 745.

    Article  Google Scholar 

  43. Rashleigh, S. C. and Ulrich, R. (1980) High-birefringence in tension-coiled single mode fiber. Optics, Lett., 5, 354.

    Article  Google Scholar 

  44. Pikaar, T., van Bochore, K., van Rooyen, A. et al. (1989) Non-deterministic endless control scheme for active polarisation control. J. Lightwave Technol., 7, 1982–7.

    Article  Google Scholar 

  45. Noe, R. (1986) Endless polarisation control experiments with three elements of limited birefringence range. Electron. Lett., 22, 1341–3.

    Article  Google Scholar 

  46. Okoshi, T., Cheng, Y. H. and Kikuchi, K. (1985) New polarisation-control scheme for optical heterodyne receiver using two Faraday rotators. Electron. Lett., 21, 787–788.

    Article  Google Scholar 

  47. Tatam, R. P., Pannell, C. N., Jones J. D. C. and Jackson D. A. (1987) Full polarisation state control utilising linearly birefringent monomode optical fibers. J. Lightwave Technol., LT-5, 980–985.

    Article  Google Scholar 

  48. Rashleigh, S. C. (1983) Polarimetric sensors: exploiting the axial stress in high birefringence fibres. IEE Conference Publication no. 221, 210–213.

    Google Scholar 

  49. Jerrard, H. G. (1954) Transmission of light through birefringent and optically active media: the Poincare sphere. J. Opt. Soc. Am., 44, 634–640.

    Article  Google Scholar 

  50. Johnson, M. (1981) Poincaré sphere representation of birefringent networks. Appl. Optics, 20, 2075–2080.

    Article  Google Scholar 

  51. Kersey, A. D., Marrone, M. J., Dandridge, A. and Tveten, A. B. (1988) Optimisation and stabilisation of visibility in interferometric fiber-optic sensors using input-polarization control. J. Lightwave Technol., 6, 1599–1609.

    Article  Google Scholar 

  52. Pannell, C. N., Tatam, R. P., Jones, J. D. C. and Jackson, D. A. (1988) Two-dimensional fibre-optic laser velocimetry using polarisation state control. J. Phys. E: Sci. Instrum., 21, 103–107.

    Article  Google Scholar 

  53. Tatam, R. P., Jones, J. D. C. and Jackson, D. A. (1986) Optical polarisation state control schemes using fibre optics or Bragg cells. J. Phys. E: Sci. Instrum., 19, 711–717.

    Article  Google Scholar 

  54. Jones, R. C. (1941) New calculus for the treatment of optical systems. J. Opt. Soc. Am., 31, 488.

    Article  Google Scholar 

  55. Tatam, R. P., Hill, D. C, Jones, J. D. C. and Jackson, D. A. (1988) All-fiber-optic polarisation state azimuth control: application to Faraday rotation. J. Lightwave Technol., 6, 1171–1176.

    Article  Google Scholar 

  56. Tatam, R. P., Jones, J. D. C. and Jackson, D. A. (1986) Optoelectronic processing schemes for the measurement of circular birefringence. Optica Acta, 33, 1519–1528.

    Article  Google Scholar 

  57. Chandler, G. I., Forman, P. R., Jahoda, F. C. and Klare, K. A. (1986) Fibre optic heterodyne phase-shift measurement of plasma current. Appl. Optics, 25, 1770.

    Article  Google Scholar 

  58. Kersey, A. D. and Jackson, D. A. (1986) Current sensing utilising heterodyne detection of the Faraday effect in single-mode optical fibre. J. Lightwave Technol., LT-4.

    Google Scholar 

  59. Tatam, R. P. and Jackson, D. A. (1989) Remote probe configuration for Faraday effect magnetometry. Optics Comm., 69, 60–65.

    Article  Google Scholar 

  60. Barlow, A. J. and Payne, D. N. (1983) The stress-optic effect in optical fibres. IEEE J. Quantum Electron., QE-19, 834–839.

    Article  Google Scholar 

  61. Landau, L. D. and Lifshitz, E. M. (1970) Theory of Elasticity, Pergamon Press, Oxford.

    Google Scholar 

  62. Knuhtsen, J., Ollday, E. and Buchhave, P. (1982) Fibre optic laser Doppler anemometer with Bragg frequency shift utilising polarisation-preserving single-mode fibre. J. Phys. E: Sci. Instrum., 15, 1188–1191.

    Article  Google Scholar 

  63. Lewin, A. C, Kersey, A. D. and Jackson, D. A. (1985) Non-contact surface vibration analysis using a monomode fibre optic interferometer incorporating an open air path. J. Phys. E: Sci. Instrum., 18, 604.

    Article  Google Scholar 

  64. Nosu, K., Rashleigh, S. C., Taylor, H. F. and Weiler, J. F. (1983) Acousto-optic frequency shifter for single-mode fibres. Electron. Lett., 19, 816–818.

    Article  Google Scholar 

  65. Pannell, C. N., Tatam, R. P., Jones, J. D. C. and Jackson, D. A. (1988) Monomode fiber modulators: frequency and polarisation state control. Fiber Integr. Optics, 7, 299–315.

    Article  Google Scholar 

  66. Risk, W. P., Youngquist, R. C., Kino, G. S. and Shaw, H. J. (1984) Acousto-optic frequency shifting in birefringent fibre. Optics Lett., 9, 309.

    Article  Google Scholar 

  67. Risk, W. P., Kino, G. S. and Shaw, H. J. (1986) Fiber-optic frequency shifter using a surface acoustic wave incident at an oblique angle. Optics Lett., 11, 115–117.

    Article  Google Scholar 

  68. Engan, H. E., Kim, B. Y., Blake, J. N. and Shaw, H. J. (1988) Propagation and optical interaction of guided acoustic waves in two-mode optical fibers. J. Lightwave Technol., 6, 428–436.

    Article  Google Scholar 

  69. Youngquist, R. C., Brooks, J. L., Risk, W. P. et al. (1985) All-fibre components using periodic coupling. IEE Proc, 132(5), 277–286.

    Google Scholar 

  70. Risk, W. P., Youngquist, R. C., Kino, G. S. and Shaw, H. J. (1986) Acousto-optic frequency shifting using periodic contact with a co-propagating surface acoustic wave. Optics Lett., 11, 336–338.

    Article  Google Scholar 

  71. Greenhalgh, P. A., Foord, A. P. and Davies, P. A. (1990) Fibre optic frequency shifters. Proc. SPIE, 1314, 284–295.

    Article  Google Scholar 

  72. Foord, A. P., Greenhalgh, P. A. and Davies, P. A. (1991) All-fibre frequency shifters using multiple acoustic transducers. Electron. Lett., 27, 1141–2.

    Article  Google Scholar 

  73. Lisbôa, O. and Carrara, S. L. A. (1992) In-line acousto-optic frequency shifter in two-mode fibre. Optics Lett., 17, 154.

    Article  Google Scholar 

  74. Lisbôa, O., Blake, J. N., Oliveira, J. E. B. and Carrara, S. L. A. (1990) New configuration for an optical fiber acousto-optic frequency shifter. Proc. SPIE, 1267, 17–23.

    Article  Google Scholar 

  75. Pannell, C. N., Tatam, R. P., Jones, J. D. C. and Jackson, D. A. (1988) A fibre optic frequency shifter utilising travelling flexure waves in birefringent fibres. J. Inst. Electron. Radio Engrs, S8, S92–8.

    Article  Google Scholar 

  76. Ji, J., Uttam, D. and Culshaw, B. (1986) Acousto-optic frequency shifting in ordinary single-mode fibre. Electron. Lett., 22, 1141–2.

    Article  Google Scholar 

  77. Berwick, M., Pannell, C. N., Russell, P. St. J. and Jackson, D. A. (1991) Demonstration of birefringent optical fibre frequency shifter employing torsional acoustic waves. Electron. Lett., 27, 713–715.

    Article  Google Scholar 

  78. Kim, B. Y., Blake, J. N., Engan, H. E. and Shaw, H. J. (1986) All-fiber acousto-optic frequency shifter. Optics Lett., 11, 389–391.

    Article  Google Scholar 

  79. Mason, W. P. (1958) Physical Acoustics and the Properties of Solids, Van Nostrand, New York.

    Google Scholar 

  80. Sabert, H., Dong, L. and Russell, P. St. J. (1992) Versatile acousto-optical flexural wave-modulator, filter and frequency shifter in dual-core fibre. Int. J. Optoelectron., 7, 189–194.

    Google Scholar 

  81. Smith, R. G. (1972) Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and Brillouin scattering. Appl. Optics, 11, 2489–2494.

    Article  Google Scholar 

  82. Agrawal, G. P. (1989) Non-linear Fiber Optics, Academic Press, London.

    Google Scholar 

  83. Cotter, D. (1983) Stimulated Brillouin scattering in monomode optical fibre. J. Opt. Commun., 4, 10–19.

    Google Scholar 

  84. Tang, C. L. (1966) Saturation and spectral characteristics of the Stokes emission in the stimulated process. J. Appl. Phys., 37, 2945–2955.

    Article  Google Scholar 

  85. Cotter, D. (1982) Observation of stimulated Brillouin scattering in low loss silica fibre at 1.3 μm. Electron. Lett., 18, 445–496.

    Article  Google Scholar 

  86. Khan, O. S. and Tatam, R. P. (1993) Fiber optic frequency shifter based on stimulated Brillouin scattering in a birefringent fiber ring resonator. Optics Comm. 103, 161–168.

    Article  Google Scholar 

  87. Kadiwar, R. K. and Giles, I. P. (1989) Optical fibre Brillouin ring laser gyroscope. Electron. Lett., 25, 1729–1730.

    Article  Google Scholar 

  88. Labudde, P., Anliker, P. and Weber, H. P. (1980) Transmission of narrow band high power laser radiation through optical fibers. Optics Comm., 32, 385–390.

    Article  Google Scholar 

  89. Heiman, D., Hamilton, D. S. and Hellwarth, R. W. (1979) Brillouin scattering measurements on optical glasses. Phys. Rev. B, 19, 6583–6592.

    Article  Google Scholar 

  90. Culverhouse, D. O., Farahi, F., Pannell, C. N. and Jackson, D. A. (1989) Stimulated Brillouin scattering: a means to realise a tunable microwave generator or distributed temperature sensor. Electron. Lett., 25, 915–916.

    Article  Google Scholar 

  91. Culverhouse, D. O., Farahi, F., Pannell, C. N. and Jackson, D. A. (1989) Potential of stimulated Brillouin scattering as a sensing mechanism for distributed temperature sensors. Electron. Lett., 25, 913–915.

    Article  Google Scholar 

  92. Duffy, C. J. and Tatam, R. P. (1991) Optical heterodyne carrier generation utilising stimulated Brillouin scattering in birefringent optical fibre. Electron. Lett., 27, 2004–5.

    Article  Google Scholar 

  93. Duffy, C. J. and Tatam, R. P. (1993) An optical frequency shifter based on stimulated Brillouin scattering in birefringent optical fiber. Appl. Optics, 32, 5966–5972.

    Article  Google Scholar 

  94. Harrison, R. G., Uppal, J. S., Johnstone, A. and Moloney, J. V. (1990) Evidence of chaotic stimulated Brillouin scattering in optical fibers. Phys. Rev. Lett., 69, 167–170.

    Article  Google Scholar 

  95. Stokes, L. F., Chodorow, M. and Shaw, H. J. (1983) Sensitive all-single-mode-fiber resonant ring interferometer. J. Lightwave Technol., LT1, 110.

    Article  Google Scholar 

  96. Stokes, L. F., Chodorow, M. and Shaw, H. J. (1982) All-fibre stimulated Brillouin ring laser with submilliwatt pump threshold. Optics Lett., 7, 509–511.

    Article  Google Scholar 

  97. Bayvel, P. and Giles, I. P. (1989) Linewidth narrowing in semiconductor laser pumped all-fibre Brillouin ring laser. Electron. Lett., 25, 260–262.

    Article  Google Scholar 

  98. Kalli, K., Culverhouse, D. O. and Jackson, D. A. (1991) Fiber frequency shifter based on generation of stimulated Brillouin scattering in high-finesse ring resonators. Optics Lett., 16, 1538–1540.

    Article  Google Scholar 

  99. Hill, K. O., Kawasaki, B. S. and Johnson, D. C. (1976) CW Brillouin laser. Appl. Phys. Lett., 28, 608–609.

    Article  Google Scholar 

  100. Jones, R. and Wykes, C. (1983) Holographic and Speckle Interferometry, Cambridge University Press, Cambridge.

    Google Scholar 

  101. Atcha, H. and Tatam, R. P. (1992) Applications of fibre optic electronic speckle pattern interferometry using laser diode sources. 8th Optical Fibers Sensors Conference, Monterey, CA, 217-20.

    Google Scholar 

  102. Buus, J. (1991) Single Frequency Semiconductor Lasers, SPIE Optical Engineering Press, Vol. TT5, Chapter 5.

    Google Scholar 

  103. Risk, W. P. and Kino, G. S. (1986) Acousto-optic polarisation coupler and intensity modulator for birefringent fibre. Optics Lett., 11, 48–50.

    Article  Google Scholar 

  104. Millar, C. A., Brierley, M. C. and Mallinson, S. R. (1987) Exposed core single mode fibre channel dropping filter, using a high index overlay waveguide. Optics Lett., 12, 284.

    Article  Google Scholar 

  105. Marcuse, D. (1989) Investigation of coupling between a fiber and an infinite slab. J. Lightwave Technol., 7, 122–130.

    Article  Google Scholar 

  106. Tien, P. K. (1971) Light waves in thin film and integrated optics. Appl. Optics, 10, 2395.

    Article  Google Scholar 

  107. McCallion, K., Johnstone, W. and Thursby, G. (1991) An optical fiber switch using electro-optic waveguide interlays. Proc. SPIE, 1580, 263–269.

    Google Scholar 

  108. Johnstone, W., Murray, S., Thursby, G. et al. (1991) Fibre optic modulators using active multimode waveguide overlays. Electron. Lett., 27, 894–896.

    Article  Google Scholar 

  109. Van Tomme, E., Van Dacle, P., Baets, R. et al. (1991) Guided wave modulators and switches fabricated in electro-optic polymers. J. Appl. Phys., 69, 6273–6.

    Article  Google Scholar 

  110. Fawcett, G., Johnstone, W., Andonovic, I. et al. (1992) In-line fibre-optic intensity modulator using electro-optic polymer. Electron. Lett., 28, 985–986.

    Article  Google Scholar 

  111. Wilkinson, M., Hill, J. R. and Cassidy, S. A. (1991) Optical fibre modulator using electro-optic polymer overlay. Electron Lett., 27, 979–981.

    Article  Google Scholar 

  112. Chen, R. T., Sadovnik, L., Jannson, T. and Jannson, J. (1991) Single-mode polymer waveguide modulator. Appl. Phys. Lett., 58, 1–3.

    Article  Google Scholar 

  113. Li, L., Kerr, A. and Giles, I. P. (1991) Single-mode optical fibre tunable couplers. Proc. SPIE, 1580, 205–215.

    Google Scholar 

  114. Bergh, R. A., Kotier, G. and Shaw, H. J. (1980) Single-mode fiber optic directional coupler. Electron. Lett., 16, 260.

    Article  Google Scholar 

  115. Yariv, A. (1987) An Introduction to Optical Electronics. Holt Saunders, New York.

    Google Scholar 

  116. Guenther, R. (1990) Modern Optics, John Wiley, New York.

    Google Scholar 

  117. Boyd, G. T. (1989) Application requirements for nonlinear-optical devices and the status of organic materials. J. Opt. Soc. Am. B, 6, 685–692.

    Article  Google Scholar 

  118. Allen, S. and Murray, R. T. (1988) Molecular engineering and the all-optical computer. Phys. Scripta, T23, 275–280.

    Article  Google Scholar 

  119. Allen, S. (1992) Non-linear optics, in Molecular Electronics (Ed. G. J. Ashwell), Research Studies Press, John Wiley, Chichester.

    Google Scholar 

  120. Bailey, R. T., Cruickshank, F. R., Pavlides, P., et al. (1991) Organic materials for non-linear optics; inter-relationships between molecular properties, crystal structure and optical properties. J. Phys. D: Appl. Phys., 24, 135–145.

    Article  Google Scholar 

  121. Cross, G. H., Girling, I. R., Peterson, I. R. et al. (1987) Optically non-linear Langmuir-Blodgett films: linear electro-optic properties of monolayers. J. Opt. Soc. Am. B, 4, 962–967.

    Article  Google Scholar 

  122. Ashwell, G. J., Dawnay, E. J. C., Kuczynski, A. P. and Martin, P. J. (1991) The highest observed second harmonic intensity from a multilayered Langmuir-Blodgett film structure. Proc. SPIE, 1361, 589–598.

    Article  Google Scholar 

  123. Ashwell, G. J., Hargreaves, R. C., Baldwin, C. E. et al. (1992) Improved second harmonic generation from Langmuir-Blodgett films of hemicyanine dyes. Nature, 357, 393–395.

    Article  Google Scholar 

  124. Johnstone, W., Thursby, G., Moodie, D. et al. (1992) Fibre optic wavelength channel selector with high resolution. Electron. Lett., 28, 1364–5.

    Article  Google Scholar 

  125. Charters, R. B., Kuczynski, A., Staines, S. E. et al. (1994) In-line fibre optic channel dropping filter using Langmuir-Blodgett films. Electron. Lett., 30, 594–595.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Tatam, R.P. (1995). Optical fiber modulation techniques for single mode fiber sensors. In: Grattan, K.T.V., Meggitt, B.T. (eds) Optical Fiber Sensor Technology. Optical and Quantum Electronics Series, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1210-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1210-9_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4530-8

  • Online ISBN: 978-94-011-1210-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics