Skip to main content

Optical detectors and receivers

  • Chapter
Optical Fiber Sensor Technology

Part of the book series: Optical and Quantum Electronics Series ((OISS,volume 1))

  • 489 Accesses

Abstract

An optical sensor is a system in which some parameter characteristic of an optical signal is modulated in a reproducible and recoverable manner by a measurand. Although the transduction mechanism is optical, it is necessary to convert the optical signal to an electrical one in order that it may be processed and either recorded or displayed. This function is accomplished using a photodetector, which converts optical energy to electrical energy. The basic photodetector generally produces only a low level electrical signal, which must immediately by amplified before it can undergo further processing. The combination of a photodetector and its immediate amplification is called a receiver. The role of the receiver in an idealized optical fiber sensor system is shown in Fig. 4.1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Miller, S. E. and Kaminow, I. P. (eds) (1988) Optical Fibre Telecommunications II, Academic Press, San Diego, pp. 2–28.

    Google Scholar 

  2. Smith, R. A., Jones, F. E. and Chagmar, R. P. (1968) The Detection and Measurement of Infra-red Radiation, Oxford University Press.

    Google Scholar 

  3. Roes, L. C. and Dacus, E. M. (1945) The design and construction of rapid response thermocouples for use in radiation detection in infrared spectrographs. Rev. Sci. Instrum., 16, 172.

    Article  Google Scholar 

  4. Jones, C. E., Hilton, R. A., Damrel, J. B. and Helms, C. C. (1965) The cooled germanium bolometer as a far infrared detection. Appl. Optics, 4, 683.

    Article  Google Scholar 

  5. Golay, M. J. E. (1947) Theoretical considerations in heat and infrared detection, with particular reference to the pneumatic details: a pneumatic infrared detector. Rev. Sci. Instrum., 18, 347.

    Article  Google Scholar 

  6. Chynoweth, A. G. (1956) Surface space charge layers in barium titanate. Phys. Rev., 102, 705.

    Article  Google Scholar 

  7. Steier, W. H. and Yamashita, E. (1963) A pyroelectric effect detector for submilli-metre wavelengths. Proc. IEEE, 51, 1144.

    Article  Google Scholar 

  8. Sommer, A. H. (1968) Photoemissive Materials, Wiley, New York.

    Google Scholar 

  9. Prescott, J. R. (1966) A statistical model for photomultiplier single electron statistics. Nucl. Instrum. Meth., 39, 173.

    Article  Google Scholar 

  10. Coleman, C. I. and Boksenberg, A. (1976) Image intensifiers. Contemp. Phys., 17,209.

    Article  Google Scholar 

  11. Lampton, M. (1981) The microchannel image intensifier. Sci. Am., 245, 46.

    Article  Google Scholar 

  12. Moss, T. S. (1959) Optical Properties of Semiconductors, Butterworths, Belfast.

    Google Scholar 

  13. Kingston, R. H. (1978) Detection of Optical and Infrared Radiation, Springer-Verlag, Berlin.

    Google Scholar 

  14. Avery, D. G., Goodwin, D. W. and Rennie, A. E. (1957) New infrared detectors using indium antimonide. J. Sci. Instrum., 34, 394.

    Article  Google Scholar 

  15. Blue, M. D. (1964) Optical absorption in HgTe and HgCdTe. Phys. Rev., 134, 1226.

    Article  Google Scholar 

  16. Forrest, S. R. (1984) IEEE J. Lightwave Technol., LT3, 347.

    Google Scholar 

  17. Melchior, H. (1977) Detectors for lightwave communications. Phys. Today, 30, 32.

    Article  Google Scholar 

  18. Sze, S. M. (1967) Physics of Semiconductor Devices, Wiley, New York.

    Google Scholar 

  19. Lee, T. P. and Li, T. (1979) Photodetectors, in Optical Fiber Telecommunications (eds S. E. Miller and A. G. Chynoweth), Academic Press, New York.

    Google Scholar 

  20. McKay, K. G. and McAfee, K. B. (1953) Electron multiplication in silicon and germanium. Phys. Rev., 91, 1079.

    Article  Google Scholar 

  21. Lee, C. A., Logan R. A., Batdorf, R. L. et al. (1964) Ionisation rates of holes and electrons in silicon. Phys. Rev., 134, A761.

    Article  Google Scholar 

  22. Miller, S. M. (1955) Avalanche breakdown in germanium. Phys. Rev., 99, 1234.

    Article  Google Scholar 

  23. Anderson, L. K., McMullin, P. G., D’Asciro, L. A. and Goetzberger, A. (1965) Microwave photodiodes exhibiting microplasma-free carrier multiplication. Appl. Phys. Lett., 6, 62.

    Article  Google Scholar 

  24. Melchion, H. and Lynch, W. T. (1966) Signal and noise response of high speed germanium avalanche photodiodes. IEEE Trans. Electron. Devices, ED13, 829.

    Article  Google Scholar 

  25. Lindley, W. T., Phelan, R. J., Wolfe, C. M. and Foyt, A. G. (1969) GaAs Schottky barrier avalanche photodiodes. Appl. Phys. Lett., 14, 197.

    Article  Google Scholar 

  26. Brown, R. G. W., Jones, R., Dainty, J. G. and Dudley, K. D. (1987) Characterisation of silicon avalanche photoelectrodes for photon correlation measurements. Appl. Optics, 26, 1562.

    Google Scholar 

  27. Melchior, H. (1972) Demodulation and photodetection techniques, in Laser Handbook. (eds F. T. Arecchi and E. D. Schulz-Dubois), Elsevier, Amsterdam.

    Google Scholar 

  28. Personick, S. D. (1971) Statistics of a general class of avalanche detectors with application to optical communication. Bell Syst. Tech. J., 50, 3075.

    Google Scholar 

  29. McIntyre, R. J. (1972) The distribution of gain in uniformly multiplying avalanche photodiodes. IEEE Trans. Electron. Devices, ED19, 703.

    Article  Google Scholar 

  30. Webb, P. P., Mclntyre, R. J. and Conradi, J. (1974) Properties of avalanche photo-diodes. RCA Rev., 35, 234.

    Google Scholar 

  31. Forrest, S. R. (1988) Optical detectors for lightwave communications, in Optical Fibre Telecommunications II. (eds S. E. Miller and I. P. Kaminow), Academic Press, San Diego.

    Google Scholar 

  32. Malyon, D. J. and McDonna, A.P. (1982) Electron. Lett., 18, 445.

    Article  Google Scholar 

  33. Schneider, M. V. (1966) Schottky barrier photodiodes with antireflection coating. Bell Syst. Tech. J., 45, 611.

    Google Scholar 

  34. Melchior, H. (1973) Sensitive high speed photodetectors for the demodulation of visible and near infra-red light. J. Lumin, 7, 390.

    Article  Google Scholar 

  35. Webb, P. P., Mclntyre, R. J. and Conradi, J. (1974) Properties of avalanche photo-diodes. RCA Rev., 35, 234.

    Google Scholar 

  36. Forrest, S. R., Kim, O. K. and Smith, R. G. (1982) Appl. Phys. Lett., 41, 95.

    Article  Google Scholar 

  37. Kasper, B. L. (1988) Receiver design, in Optical Fibre Telecommunications II. (eds S. E. Miller and I. P. Kaminow), Academic Press, San Diego.

    Google Scholar 

  38. Goell, J. E. (1974) An optical repeater with high-impedence input amplifier. Bell Syst. Tech. J., 53, 629.

    Google Scholar 

  39. Ogawa, K. and Chinnock, E. L. (1974) GaAs FET transimpedance front-end design for a wideband optical receiver. Electron. Lett., 15, 650.

    Article  Google Scholar 

  40. Runge, P. K. (1976) An experimental 50Mb/s fibre optic PCM repeater. IEEE Trans. Communication, COM24, 413.

    Article  Google Scholar 

  41. Muoi, T. V. (1984) Receiver design for high speed optical fibre systems. IEEE J. Lightwave Technol, LT2, 243.

    Article  Google Scholar 

  42. Smith, D. R., Hooper, R. C., Smyth, P. P. and Waker D. (1982) Experimental comparison of a germanium avalanche photodiode and InGaAs PINFET receiver for longer wavelength optical communication systems. Electron. Lett., 18, 453.

    Article  Google Scholar 

  43. Kasper B. L., Campbell, J. C., Talman, J. R. et al. (1987) An APD/FET optical receiver operating at 8Gbit/sec. IEEE J. Lightwave Technol, LT5, 344.

    Article  Google Scholar 

  44. Smith, D. R., Hooper, R. C. and Garrett, I. (1978) Receivers for optical communications: a comparison of avalanche photodiodes with PIN-FET hybrids. Optics Quant. Electron., 10, 293.

    Article  Google Scholar 

  45. Pearsall, T. P. and Pollack, M. A. (1985) Compound semiconductor photodiodes, in Semiconductors and Semimetals, Vol. 22. (ed. W. T. Tsang), Academic Press, Orlando, FL. p. 174.

    Google Scholar 

  46. Conner, F. R. (1982) Noise, Edward Arnold.

    Google Scholar 

  47. Personick, S.D. (1971) New results on avalanche multiplication statistics with applications to optical detection, Bell Syst. TechnoL J., 50, 167.

    Google Scholar 

  48. Personick, S. D. (1973) Receiver design for digital optical fibre communication systems. Bell Syst. Tech. J., 52, 843.

    Google Scholar 

  49. McIntyre, R. J. and Conradi, J. (1974) Properties of avalanche photodiodes. RCA Rev., 35, 234.

    Google Scholar 

  50. Garrett, I. (1981) Receivers for optical fibre communications. Electron. Radio Eng., 51, 349.

    Article  Google Scholar 

Further Reading

  1. Jones, R., Oliver, C. J. and Pike, E. R. (1971) Experimental and theoretical comparison of photon counting and current measurements of light intensity. Appl. Optics, 10, 1673.

    Article  Google Scholar 

  2. Personick, S. D. (1979) Receiver design, in Optical Fibre Telecommunications (eds, S. E. Miller and A. G. Chynoweth), Academic Press, New York.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Jones, J.D.C. (1995). Optical detectors and receivers. In: Grattan, K.T.V., Meggitt, B.T. (eds) Optical Fiber Sensor Technology. Optical and Quantum Electronics Series, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1210-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1210-9_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4530-8

  • Online ISBN: 978-94-011-1210-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics