Skip to main content

Advanced external fiber optic sensors

  • Chapter
Book cover Optical Fiber Sensor Technology

Part of the book series: Optical and Quantum Electronics Series ((OISS,volume 1))

  • 474 Accesses

Abstract

In this chapter the mode of operation and performance of the most advanced external fiber optic sensor systems for velocity, vibration, acceleration and displacement will be discussed. These may be grouped under the following headings:

  1. 1.

    Fiber optic laser Doppler anemometers

  2. 2.

    Transit time anemometers

  3. 3.

    Noncontact vibrometers

  4. 4.

    Holography and TV holography

  5. 5.

    Accelerometers and geophones

  6. 6.

    Displacement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Drain, L. E. (1980) The Laser Doppler Technique, John Wiley.

    Google Scholar 

  2. Kruhsten, J., Olldag, E. and Buckhave, P. (1982) Fibre optic laser Doppler anemometer with Bragg frequency shift utilising polarization preserving single mode fibre. J. Phys. E: Sci. Instrum., 15, 1188.

    Article  Google Scholar 

  3. Jackson, D. A. and Jones, J. D. C. (1986) Extrinsic fibre optic sensors for remote measurement, Part I and Part II. Optics Laser Technol., 18, 243, 299.

    Article  Google Scholar 

  4. Kim, B. Y., Blake, J. N., Engan, H. E. and Shaw, H. J. (1986) All fibre acousto-optic frequency shifter. Optics Lett., 11, 389.

    Article  Google Scholar 

  5. Berwick, M. and Jackson, D. A. (1992) Co-axial optical fiber frequency shifter. Optics Lett., 17, 270.

    Article  Google Scholar 

  6. Pannell, C. N., Midgley, J. H., Jones, J. D. C. and Jackson, D. A. (1988) Fibre optic transit velocimetry using laser diode sources. Electron. Lett., 24, 525.

    Article  Google Scholar 

  7. Ahmed, N., Hamid, S. Eder, R. L., Foster, C. P., Tatam, R. P. and Jones, J. D. C. (1992) Fibre optic laser anemometry for turbomachinery applications. Optics Laser Eng., 16, 193.

    Article  Google Scholar 

  8. Buckhave, P. (1975) Laser Doppler vibration measurements using variable frequency shift. DISA information leaflet 18, p. 15.

    Google Scholar 

  9. Laser vibrometers catalogue, Polytec Ltd.

    Google Scholar 

  10. Jones, J. D. C., Corke, M., Kersey, A. D. and Jackson, D. A. (1984) Single-mode fibre optic holography. J. Phys. E: Sci. Instrum., 17, 271.

    Article  Google Scholar 

  11. Corke, M., Jones, J. D. C., Kersey, A. D. and Jackson, D. A. (1985) All single-mode fibre optic holographic system with active fringe stabilisation. J. Phys. E: Sci. Instrum., 18, 185.

    Article  Google Scholar 

  12. Jones, R. and Wykes, C. (1989) Holographic and Speckle Interferometry, Cambridge University Press, Cambridge.

    Book  Google Scholar 

  13. Santos, J. L., Newson, T. P., Jackson, D. A. (1990) Electronic speckle-pattern interferometry using single-mode fibre and active fringe stabilisation. Optics Lett., 15, 573.

    Article  Google Scholar 

  14. Atcha, H. and Tatam, R. P. (1992) 8th Optical Fiber Sensor Conference, Monterey, 217.

    Google Scholar 

  15. Gerges, A. S., Newson, T. P., Jones, J. D. C. and Jackson, D. A. (1989) High-sensitivity fiber-optic accelerometer. Optics Lett., 14, 251.

    Article  Google Scholar 

  16. Santos, J. L., Leite, A. P. and Jackson, D. A. (1992) Optical fibre sensing with a low-finesse Fabry-Perot cavity. Appl. Optics, 31, 7361.

    Article  Google Scholar 

  17. Kersey, A. D., Jackson, D. A. and Corke, M. (1982) High-sensitivity fibre optic accelerometer. Electron. Lett., 18, 559.

    Article  Google Scholar 

  18. Gardner, D. L., Hofler, T., Baker, S. R., Yarber, R. K. and Garrett, S. L. (1987) A fiber-optic interferometric seismometer. J. Lightwave Technol., LT-5, 953.

    Article  Google Scholar 

  19. Ulrich, R., Rashleigh, S. C. and Eichoff, W. (1980) Bending induced birefringence in single mode fibre. Optics Lett., 5, 173.

    Article  Google Scholar 

  20. Lefevre, H. C. (1984) Single mode fibre fractional wave devices and polarization controllers. Electron. Lett., 9, 306.

    Google Scholar 

  21. Pistoni, N. C. and Martinelli, M. (1991) Polarization noise suppression in retracting optical fiber circuits. Optics Lett., 16, 711.

    Article  Google Scholar 

  22. Kersey, A. D., Marrone, M. J. and Davis, M. A. (1991) Polarization insensitive fibre optic Michelson interferometer. Electron. Lett., 27, 518.

    Article  Google Scholar 

  23. Pechstedt, R. D. (1993) Unpublished data, University of Kent.

    Google Scholar 

  24. Kersey, A. D. and Dandridge, A. (1987) Dual wavelength approach to interferometric sensing. Proc. SPIE, 798, Fibre Optics Sensors, 11, 176.

    Google Scholar 

  25. Uttam, D. and Culshaw, B. (1983) Precision time domain reflectometry in optical fibre systems using a frequency modulated continuous wave ranging technique. J. Lightwave Technol., 3, 971.

    Article  Google Scholar 

  26. Jackson, D. A., Kersey, A. D., Corke, M. and Jones, J. D. C. (1982) Pseudo-heterodyne detection scheme for optical interferometers. Electron. Lett., 18, 1081.

    Article  Google Scholar 

  27. Beheim, G. and Fritsch, K. (1985) Remote displacement measurements using a laser diode. Electron. Lett., 21, 93.

    Article  Google Scholar 

  28. Deffarari, H. A., Darby, R. A. and Andres, F. A. (1967) Vibrational displacement and mode shape measurement by laser interferometer. J. Acoust. Soc. Am., 42, 982.

    Article  Google Scholar 

  29. Jackson, D. A. (1983) High precision remote liquid level measurement using a combination of optical radar and optic fibres. First Optic Fibre Sensor Conference, p. 100. (Also Optica Acta, 33, 1571, 1986.)

    Google Scholar 

  30. Wade, C. A., Dakin, J. P., Croft, J. and Wright, J. (1985) Optical fibre displacement sensor based on electrical subcarrier interferometry using a Mach Zehnder configuration. Proc. SPIE, 586, 223.

    Google Scholar 

  31. Wade, C. A., Kersey, A. D. and Dandridge, A. (1988) Temperature sensor based on a fibre optic differential delay R. F. filter. Electron. Lett., 24, 1305.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Jackson, D.A. (1995). Advanced external fiber optic sensors. In: Grattan, K.T.V., Meggitt, B.T. (eds) Optical Fiber Sensor Technology. Optical and Quantum Electronics Series, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1210-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1210-9_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4530-8

  • Online ISBN: 978-94-011-1210-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics