Skip to main content

Schemes for referencing of intensity-modulated optical sensor systems

  • Chapter
Book cover Optical Fiber Sensor Technology

Part of the book series: Optical and Quantum Electronics Series ((OISS,volume 1))

  • 476 Accesses

Abstract

For over a decade, intensity modulation has remained one of the most extensively investigated forms of optical signal modulation for sensing applications [1-10]. The simple reason for the extensive and diversified usage of this modulation scheme is a multitude of potential benefits that include the inherent simplicity, reliability, flexibility and relatively low costs. Although intensity-modulated optical fiber sensors have been fabricated in many different designs and with varying degrees of complexity, the essential building blocks of a simple optical fiber sensor system are depicted in Fig. 12.1. Light from an optical source, such as a light-emitting diode (LED), is coupled into an optical fiber for transmission to the optical sensor where it can be modulated in accordance with the state of a measurand. When using reflection-mode sensing the modulated optical signal can be retroreflected into the same optical fiber for transmission to the photo-detector [9]. However, in transmission-mode sensing a second optical fiber is normally used for the transmission of the modulated signal to the photodetector.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. McGlade, S. M. (1981) Optical sensors for displacement measurement. Marconi Rev., 2nd qtr, 119–136.

    Google Scholar 

  2. Giallorenzi, T. G., Bucaro, J. A. et al. (1982) Optical fiber sensor technology. IEEE J. Quant. Electron., QE-18(4), 626–665.

    Article  Google Scholar 

  3. Grover, D. J. (1984) Fibre optics inventions assigned to the British Technology Group from universities in the United Kingdom. Proc. SPIE, 468, Fibre Optics’ 84, 28–48.

    Article  Google Scholar 

  4. Takashi, N. (1984) Optical sensing technologies by multimode fibers. Proc. SPIE, 478, Fiber Optic and Laser Sensors II’ 84, 19–26.

    Google Scholar 

  5. Pitt, G D., Extance, P., Neat, R. C. etal. (1985) Optical fibre sensors IEE Proc, 132, Pt. J, No. 4, 214–248.

    Google Scholar 

  6. Krohn D. A. (1986) Intensity modulated fiber optic sensors overview. Proc. SPIE 718 Fiber Optic and Laser Sensors IV 2–11

    Google Scholar 

  7. Medlock, R.S. (1986) Review of modulating techniques for fibre optic sensors J. Opt. Sensors, 1(1), 43–68.

    Google Scholar 

  8. Berthold, J. W. (1987) Overview of fiber-optic intensity sensors for industry. Proc. SPIE, 838, Fiber Optic and Laser Sensors V, 2–8.

    Google Scholar 

  9. Senior, J. M., Murtaza, G., Stirling, A. I. and Wainwright, G. H. (1989) Dual wavelength intensity modulated optical fibre sensor system. Proc. SPIE, 1120, Fibre Optics’ 89, 332–337.

    Article  Google Scholar 

  10. Culshaw, B. and Dakin, J. (1989) Optical Fibre Sensors: Systems and Applications, Vol. II, Artech House.

    Google Scholar 

  11. Jones, B. E., (1985) Optical fibre sensors and systems for industry. J. Phys. E: Sci. Instrum., 18, 770–781.

    Article  Google Scholar 

  12. Jones, B. E. (1977) Instrumentation, Measurement, and Feedback, McGraw-Hill.

    Google Scholar 

  13. Gardiner, P. T. and Edwards, R. A. (1987) Fibre optics sensors (FOS) for aircraft flight controls, in Proceedings Applications of Light in Guided Flight, Royal Aeronautical Society, pp. 42-63.

    Google Scholar 

  14. Culshaw, B., Foley, J. and Giles, I. P. (1985) A balancing technique for optical fibre intensity modulated transducers. Proc. SPIE, 514, Optical Fibre Sensors’ 85, 117–120.

    Article  Google Scholar 

  15. Giles, I. P., McNeill, S. and Culshaw, B. (1985) A stable remote intensity based optical fibre sensor. J. Phys. E: Sci. Instrum., 18, 502–504.

    Article  Google Scholar 

  16. Beheim, G. and Anthan, D. J. (1986) Loss-compensation of intensity-modulating fibre-optic sensors. Proc. SPIE, 718, Fibre Optic and Laser Sensors IV, 259–265.

    Google Scholar 

  17. Beheim, G., Anthan, D. J. and Rys, J. R. (1988) Modulated-splitting-ratio fiber-optic temperature sensor. Proc. SPIE, 985, Fibre Optic and Laser Sensors VI, 82–88.

    Google Scholar 

  18. Bois, E., Huard, S. J. and Boisde, G. (1988) Loss compensated remote fiber optic displacement sensors for industrial applications, in EFOC/LAN 88, pp. 246–250.

    Google Scholar 

  19. Martens, G., Kordts, J. and Weidinger, G. (1989) A photo-elastic pressure sensor with loss-compensated fiber link, in Optical Fiber Sensors, Springer Proceedings in Physics, Vol. 44, Springer-Vertag, Berlin, pp. 458–463.

    Google Scholar 

  20. Senior, J. M. and Cusworth, S. D. (1987) Intensity modulated optical fibre sensors employing graded index rod lenses, in Fibre Optic Sensors, IOP Short Meetings Series No. 7, Institute of Physics, Bristol, pp. 89–93

    Google Scholar 

  21. Shaik, M. A. (1989) Design and analysis of fiber optic position sensor. Proc. SPIE, 1169, Fiber Optic and Laser Sensors VII, 473–484.

    Article  Google Scholar 

  22. Cockshot, C. P. and Pacaud, S. J. (1989) Compensation of an optical fiber reflective sensor. Sensors Actuators, 17, 167–171.

    Article  Google Scholar 

  23. Moiseyev, V. V. and Potapov, V. T. (1988) Analysis of the stability of reflection-type fiber-optic sensors. Telecommun. Radio Eng. Pt. 2, 43(9), 72–75.

    Google Scholar 

  24. Corke, M., Gillham, F., Hu, A. etal. (1988) Fiber optic pressure sensors employing reflective diaphragm techniques. Proc. SPIE, 985, Fiber Optic and Laser Sensors VI, 164–171.

    Google Scholar 

  25. Berthold, J. W., Ghering, W. L. and Varshineya, D. (1987) Design and characterization of a high temperature fibre-optic pressure transducer. J. Lightwave Technol, LT-5(7), 870–876.

    Article  Google Scholar 

  26. Spillman, W. B., Fuhr, P. L. and Kajenski, P. J. (1988) Self-referencing fiber optic rotary displacement sensor. Proc SPIE, 985, Fiber Optic and Laser Sensors VI, 305–310.

    Google Scholar 

  27. Iwamoto, K. and Kamata, I. (1990) Pressure sensor using optical fibers. Appl. Optics, 29(3), 375–378.

    Article  Google Scholar 

  28. Ayub, M., Spooncer, R. C. and Jones, B. E. (1988) Environmentally compensated photoelastic pressure sensors with optical fibre links. Proc. SPIE, 1011, Fiber Optic Sensors III, 130–135.

    Google Scholar 

  29. Ramakrishnan, L., Unger, L. and Kist, R. (1988) Line loss independent fiberoptic displacement sensor with electrical subcarrier phase encoding. Tech. Dig. Ser., 2, Opt. Fiber Sensors, 133–136.

    Google Scholar 

  30. Adamovsky, G. (1986) Time domain referencing in intensity modulation fiber optic sensing systems. Proc. SPIE, 661, Optical Testing and Metrology, 145–151.

    Article  Google Scholar 

  31. Lammerink, T. S. J. and Fluitman, J. H. J. (1984) Measuring methods for optical fibre sensors. J. Phys. E: Sci. Instrum., 17, 1127–9.

    Article  Google Scholar 

  32. Spillman, W. B. and Lord, J. R. (1987) Self-referencing multiplexing technique for fibre optic intensity sensors. J. Lightwave Technol., LT-5(7) 865–869.

    Article  Google Scholar 

  33. Bacci, M., Brenci, M., Conforti, G. etal. (1986) Thermochromic transducer optical fibre thermometer. Appl. Optics, 25(7), 1079–1082.

    Article  Google Scholar 

  34. Jones, B. (1986) The pig that looks after railway lines’, Sensor Rev., 6(4), 199–201.

    Article  Google Scholar 

  35. Scheggi, A. M., Bacci, M., Brenci, M. (1987) Thermometry by optical fibers and a thermochromic transducer, Opt. Eng., 26(6), 534–537.

    Google Scholar 

  36. Conforti, G., Brenci, M., Mencaglia, A. and Magnani, A. G. (1989) Fiber-optic thermometric probe utilizing GRIN lenses, Appl. Optics, 28(3), 577–580.

    Article  Google Scholar 

  37. Liu, X. P., Spooncer, R. C. and Jones, B. E. (1991) An optical fibre displacement sensor with extended range using two-wavelength referencing. Sensors Actuators, A25(l-3), 197–200.

    Google Scholar 

  38. Schoener, G., Bechtel, J. H. and Salour, M. M. (1985) Novel fiber coupler for optical fibre temperature sensor. Proc. SPIE, 514, Optical Fibre Sensors’ 85, 203–206.

    Article  Google Scholar 

  39. Dakin, J. P., Wade, C. A. and Withers, P. B. (1988) An optical fibre sensor for the measurement of pressure. Fiber Integr. Optics, 7, 35–46.

    Article  Google Scholar 

  40. Senior, J. M., Murtaza, G., Stirling, A. I and Wainwright, G. H. (1992) Single LED based dual wavelength referenced optical fibre sensor system using intensity modulation. Optics Laser Technol., 24(4), 187–192.

    Article  Google Scholar 

  41. Dakin, J. and Culshaw, B. (1989) Optical Fibre Sensors: Systems and Applications, Vol. I, Artech House.

    Google Scholar 

  42. Romaniuk, R. S. and Dorosz, J. (1989) Multicore micro-optics. Int. J. Optoelectron., 4(3/4), 201–219.

    Google Scholar 

  43. Cozens, J. R., Green, M. and Gu, Y. (1988) Special fibres for sensing. Proc. SPIE, 1011, Fiber Optic Sensors III, 62–66.

    Google Scholar 

  44. Kociszewski, L., Stepieh, R. and Buzniak, J. (1988) New manufacturing method of sensor oriented optical fibres. Proc. SPIE, 1011, Fiber Optic Sensors III, 71–80.

    Google Scholar 

  45. Grosskopf, K. G. (1988) Integrated optics for sensors. Proc. SPIE, 1011, Fiber Optic Sensors III, 38–45.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Murtaza, G., Senior, J.M. (1995). Schemes for referencing of intensity-modulated optical sensor systems. In: Grattan, K.T.V., Meggitt, B.T. (eds) Optical Fiber Sensor Technology. Optical and Quantum Electronics Series, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1210-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1210-9_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4530-8

  • Online ISBN: 978-94-011-1210-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics