Skip to main content

Polyhedral Dynamics

  • Chapter
  • First Online:
Graph Theoretical Approaches to Chemical Reactivity

Part of the book series: Understanding Chemical Reactivity ((UCRE,volume 9))

Abstract

The concept of a polyhedron is a useful way for describing diverse chemical structures. In such a context a polyhedron may be regarded as a set consisting of (zero-dimensional) points, namely its vertices; (one-dimensional) lines connecting some of the vertices, namely its edges; and (two-dimensional) surfaces formed by the edges, namely its faces. Polyhedra can appear in chemical structures as coordination polyhedra in which the vertices represent ligands surrounding a central atom which is often, but not always, a metal, and cluster polyhedra in which the vertices represent multivalent atoms and the edges represent bonding distances. Deltahedra , in which all faces are triangles, are a special type of polyhedra which appear often in chemical contexts. Chemically significant deltahedra are depicted in Figure 1. The topology of a polyhedron can be described by a graph, called the 1-skeleton of the polyhedron. The vertices and edges of the 1-skeleton correspond to the vertices and edges, respectively, of the underlying polyhedron.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. Grünbaum Convex Polytopes Interscience Publishers, New York, 1967.

    Google Scholar 

  2. X. Liu, D. J. Klein, T. G. Schmalz, and W. A. Seitz J. Comput. Chem. 12 , 1252 (1991).

    Article  CAS  Google Scholar 

  3. F. A. Cotton Accts. Chem. Res. 1, 257 (1968).

    Article  CAS  Google Scholar 

  4. E. L. Muetterties J. Am. Chem. Soc. 90, 5097 (1968).

    Article  CAS  Google Scholar 

  5. E. L. Muetterties J. Am. Chem. Soc. 91, 1636 (1969).

    Article  CAS  Google Scholar 

  6. E. L. Muetterties J. Am. Chem. Soc. 91, 4115 (1969).

    Article  CAS  Google Scholar 

  7. E. L. Muetterties and A. T. Storr J. Am. Chem. Soc. 91, 3098 (1969).

    Article  CAS  Google Scholar 

  8. M. Gielen and J. Nasielski Bull. Soc. Chim. Belges 78, 339 (1969).

    Article  CAS  Google Scholar 

  9. M. Gielen and J. Nasielski Bull. Soc. Chim. Belges 78, 351 (1969).

    Article  CAS  Google Scholar 

  10. M. Gielen, C. Depasse-Delit and J. Nasielski Bull. Soc. Chim. Belges 78, 357 (1969)

    Article  CAS  Google Scholar 

  11. M. Gielen and C. Depasse-Delit Theor. Chim. Acta 14, 212 (1969).

    Article  CAS  Google Scholar 

  12. M. Gielen, G. Mayence, and J. Topan J. Organometal. Chem. 18, 1 (1969)

    Article  CAS  Google Scholar 

  13. M. Gielen, M. de Clercq, and J. Nasielski J. Organometal. Chem. ’18 217 (1969).

    Article  CAS  Google Scholar 

  14. M. Gielen and N. Vanlautem Bull. Soc. Chim. Belges 79, 679 (1970)

    Article  CAS  Google Scholar 

  15. M. Gielen Bull. Soc. Chim. Belges 80, 9 (1971).

    Article  CAS  Google Scholar 

  16. J. I. Musher J. Am. Chem. Soc. 94, 5662 (1972).

    Article  CAS  Google Scholar 

  17. J. I. Musher lnorg. Chem. 11, 2335 (1972).

    Article  CAS  Google Scholar 

  18. W. G. Klemperer J. Chem. Phys. 56, 5478 (1972).

    Article  CAS  Google Scholar 

  19. W. G. Klemperer J. Am. Chem. Soc. 94, 6940 (1972).

    Article  CAS  Google Scholar 

  20. W. G. Klemperer J. Am. Chem. Soc. 94, 8360 (1972).

    Article  CAS  Google Scholar 

  21. J. Brocas Top. Curr. Chem. 32, 43 (1972).

    CAS  Google Scholar 

  22. J. Brocas, in Advances in Dynamic Stereochemistry M. Gielen, ed., Freund Publishing Co., Tel Aviv, 1985, Volume 1, pp. 43–88.

    Google Scholar 

  23. R. B. King in Advances in Dynamic Stereochemistry M. Gielen, ed., Freund Publishing Co., Tel Aviv, 1988, Volume 2, pp. 1–36.

    Google Scholar 

  24. R. B. King Applications of Graph Theory and Topology in Inorganic Cluster and Coordination Chemistry CRC Press, Boca Raton, Florida, 1992.

    Google Scholar 

  25. R. B. King J. Am. Chem. Soc. 91, 7211 (1969).

    Article  CAS  Google Scholar 

  26. B. F. G. Johnson, J. Cook, D. Ellis, S. Hefford, A. Whittaker Polyhedron 8, 2221 (1990).

    Article  Google Scholar 

  27. V. Schlegel Nova Acta Leop. Carol. 44, 343–459 (1883).

    Google Scholar 

  28. F. Harary and E. M. Palmer Graphical Enumeration Academic Press, New York, 1973, p. 224.

    Google Scholar 

  29. W. T. Tutte J. Combin. Theory Ser. B. 28, 105 (1980).

    Article  Google Scholar 

  30. A. J. W. Duijvestijn and P. J. Federico Math. Comput. 37, 523 (1981).

    Google Scholar 

  31. P. J. Federico Geom. Ded. 3, 469 (1975).

    Article  Google Scholar 

  32. D. Britton and J. D. Dunitz Acta Cryst. A29, 362 (1973).

    Google Scholar 

  33. R. B. King Theor. Chim. Acta 64, 453 (1984).

    CAS  Google Scholar 

  34. F. J. Budden The Fascination of Groups Cambridge University Press, London, 1972.

    Google Scholar 

  35. C. D. H. Chisholm Group Theoretical Techniques in Quantum Chemistry Academic Press, New York, 1976.

    Google Scholar 

  36. F. A. Cotton Chemical Applications of Group Theory Wiley, New York, 1971.

    Google Scholar 

  37. J. A. Pople J. Am. Chem. Soc. 102, 4615 (1980).

    Article  CAS  Google Scholar 

  38. S. Fujita Symmetry and Combinatorial Enumeration in Chemistry Springer-Verlag, Berlin, 1991.

    Book  Google Scholar 

  39. W. N. Lipscomb Science 153, 373 (1966).

    Article  CAS  Google Scholar 

  40. R. S. Berry J. Chem. Phys. 32, 933 (1960).

    Article  CAS  Google Scholar 

  41. R. B. King Inorg. Chim. Acta 49, 237 (1981).

    Article  CAS  Google Scholar 

  42. R. B. King Theor. Chim. Acta 64, 439 (1984).

    CAS  Google Scholar 

  43. D. Gale in Linear Inequalities and Related Systems H. W. Kuhn and A. W. Tucker, eds., Princeton, 1956, pp. 255–263.

    Google Scholar 

  44. R. B. King Inorg. Chem. 24, 1716 (1985).

    Article  CAS  Google Scholar 

  45. R. B. King Inorg. Chem. 25, 506 (1986).

    Article  CAS  Google Scholar 

  46. R. R. Holmes Accts. Chem. Res. 5, 296 (1972).

    Article  CAS  Google Scholar 

  47. P. C. Lauterbur and F. Ramirez J. Am. Chem. Soc. 90, 6722 (1968).

    Article  CAS  Google Scholar 

  48. D. L. Kepert, Prog. lnorg. Chem. 25, 41 (1979).

    Article  CAS  Google Scholar 

  49. R. B. King and D. H. Rouvray J. Am. Chem. Soc. 99, 7834 (1977).

    Article  CAS  Google Scholar 

  50. R. B. King Inorg. Chim. Acta 49, 237 (1981).

    Article  CAS  Google Scholar 

  51. B. M. Gimarc and J. J. Ott lnorg. Chem. 25, 83 (1986).

    Article  CAS  Google Scholar 

  52. J. J. Ott, C. A. Brown, and B. M. Gimarc Inorg. Chem. 28, 4269 (1989).

    Article  CAS  Google Scholar 

  53. B. M. Gimarc and J. J. Ott Inorg. Chem. 25, 2708 (1986).

    Article  CAS  Google Scholar 

  54. B. M. Gimarc and J. J. Ott Main Group Metal Chem. 12, 77 (1989).

    CAS  Google Scholar 

  55. L. J. Guggenberger and E. L. Muetterties J. Am. Chem. Soc. 98, 7221 (1976).

    Article  CAS  Google Scholar 

  56. D. J. Wales and A. J. Stone Inorg. Chem. 26, 3845 (1987).

    Article  CAS  Google Scholar 

  57. D. M. P. Mingos and R. J. Johnston Polyhedron 7, 2437 (1988).

    Article  CAS  Google Scholar 

  58. R. B. King J. Mol. Struct. THEOCHEM 185, 15 (1989).

    Article  Google Scholar 

  59. P. McMullen and G. C. Shephard Convex Polytopes and the Upper Bound Conjecture Cambridge University Press, Cambridge, England, 1971.

    Google Scholar 

  60. P. McMullen and G. C. Shephard Mathematika 15, 223 (1968).

    Article  Google Scholar 

  61. J. C. Bailar, Jr. J. Inorg. Nucl. Chem. 8, 165 (1985).

    Article  Google Scholar 

  62. P. Ray and N. K. Dutt J. Indian Chem. Soc. 20, 81 (1943).

    CAS  Google Scholar 

  63. B. M. Gimarc and J. J. Ott in Graph Theory and Topology in Chemistry R. B. King and D. H. Rouvray, eds., Elsevier, Amsterdam, 1987, pp. 285–301.

    Google Scholar 

  64. N. L. Biggs Algebraic Graph Theory Cambridge University Press, London, 1974.

    Google Scholar 

  65. G. Pólya Acta Math. 68, 143 (1937).

    Google Scholar 

  66. N. Debruijn in Applied Combinatorial Mathematics E. F. Beckenbach, ed., Wiley, New York, 1964.

    Google Scholar 

  67. J. G. Nourse and K. Mislow J. Am. Chem. Soc. 97, 4571 (1975).

    Article  CAS  Google Scholar 

  68. R. B. King Inorg. Chem. 20, 363 (1981).

    Article  CAS  Google Scholar 

  69. R. B. King Theor. Chim. Acta 59, 25 (1981).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

King, R.B. (1994). Polyhedral Dynamics. In: Bonchev, D., Mekenyan, O. (eds) Graph Theoretical Approaches to Chemical Reactivity. Understanding Chemical Reactivity, vol 9. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1202-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1202-4_4

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4526-1

  • Online ISBN: 978-94-011-1202-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics