Skip to main content

The Interplay Between Graph Theory and Molecular Orbital Theory

  • Chapter
  • First Online:
Graph Theoretical Approaches to Chemical Reactivity

Part of the book series: Understanding Chemical Reactivity ((UCRE,volume 9))

  • 201 Accesses

Abstract

Molecular orbital (MO) theory, at various levels of approximation, is nowadays a standard tool of chemists.1,2 Similarly, chemical graph theory is also becoming a powerful device in the hands of chemists.3-5 A graph-theoretical analysis of the MO theory at the level of the Hückel approximation was carried out by a number of authors, e.g.6-10 A pioneering work on the relationship between graph theory and the MO theory at the PPP level was recently accomplished by Balasubramanian.11 The complexity of this analysis is much higher than that in the case of graph-theoretical analysis of Hückel MO theory. However, this result is very valuable, because it shows that the graph-theoretical analysis of the MO theory at the higher levels of approximation is also possible. Nevertheless, we will consider in the present article only the interplay between the MO theory at the Hückel level and graph theory. In this way the analysis will be simple, clear and easily understood by a chemical community at large. Besides, the HMO theory in spite of all of its shortcomings’ is still being used by many a chemist, e.g.,12–21 as a convenient device for qualitative rationalization of a variety of chemical phenomena.

Dedicated to the memory of those brave Croatian men, women and children who died defending the freedom and democracy in the Republic of Croatia against the Serbian and Montenegrin fascists.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dewar, M.J.S. (1969) The Molecular Orbital Theory of Organic Chemistry, McGraw-Hill, New York.

    Google Scholar 

  2. Borden, W.T. (1975) Modern Molecular Orbital Theory for Organic Chemists, Prentice-Hall, Englewood Cliffs, New Jersey.

    Google Scholar 

  3. Trinajstic, N. (1983) Chemical Graph Theory, CRC Press, Boca Raton, FL, Vol. I, Vol. II.

    Google Scholar 

  4. Gutman, I. and Polansky, O.E. (1986) Mathematical Concepts in Organic Chemistry, Springer, Berlin.

    Google Scholar 

  5. Trinajstic, N. (1992) Chemical Graph Theory, 2nd revised ed., CRC Press, Boca Raton, FL.

    Google Scholar 

  6. Günthard, H.H. and Primas, H (1956) Helv. Chim. Acta 39, 1645.

    Google Scholar 

  7. Gutman, I. and Trinajstic, N. (1973) Topics Cuff. Chem. 42 49.

    CAS  Google Scholar 

  8. Coulson, C.A., O’Leary, B. and Mallion, R.B. (1978) Hückel Theory for Organic Chemists, Academic Press, London.

    Google Scholar 

  9. Trinajstic, N. (1991) in D.H. Rouvray and D. Bonchev (eds.), Chemical Graph Theory: Introduction and Fundamentals, Gordon&Breach/Abacus Press, New York, p. 235.

    Google Scholar 

  10. Dias, J.R. (1993) Molecular Orbital Calculations Using Chemical Graph Theory, Springer, Berlin.

    Google Scholar 

  11. Balasubramanian, K. J (1991) Math. Chem. 7, 353.

    CAS  Google Scholar 

  12. Haymet, A.D.J. (1986) J. Amer. Chem. Soc. 108, 319.

    CAS  Google Scholar 

  13. Stone, A.J. and Wales, D.J. (1986) Chem. Phys. Lett. 128, 501.

    CAS  Google Scholar 

  14. Burdett, J.K. (1987) Struct. Bonding (Berlin) 65, 29.

    CAS  Google Scholar 

  15. Wang, Y., George, T.F., Lindsay, D.M. and Beri, A.C. (1987) J. Chem. Phys. 86, 3493.

    CAS  Google Scholar 

  16. Mestechkin, M.N. and Poltavets, V.N. (1988) J. Struct. Chem. 29, 461.

    Google Scholar 

  17. Dias, J.R. (1989) J. Chem. Educ. 66, 1012.

    CAS  Google Scholar 

  18. Klein, D.J. (1990) Reports Mol. Theory 1, 91.

    CAS  Google Scholar 

  19. Brendsdal, E., Cyvin, S.J., Cyvin, B.N., Brunvoll, J., Klein, D.J. and Seitz, W.A. (1991) in I. Hargittai (ed.), Quasicrystals, Networks and Molecules with Fivefold Symmetry, VCH Publishers, New York, p. 257.

    Google Scholar 

  20. Manopoulos, D.E. (1991) J. Chem. Soc. Faraday Trans. 87, 2861.

    Google Scholar 

  21. Manopoulos, D.E., May, J.C. and Down, S.E. (1991) Chem. Phys. Lett. 181 105.

    Google Scholar 

  22. Harary, F. (1971) Graph Theory, Addison-Wesley, Reading, MA, 2nd printing.

    Google Scholar 

  23. Cyvin, S.J. and Gutman, I. (1988) Kekulé Structures in Benzenoid Hydrocarbons, Springer, Berlin.

    Google Scholar 

  24. Cvetkovié, D.M., Doob, M. and Sachs, H. (1980) Spectra of Graphs: Theory and Applications, Academic Press, New York.

    Google Scholar 

  25. Coulson, C.A. (1950) Proc. Cambridge Philos. Soc. 46, 202.

    Google Scholar 

  26. Trinajstié, N. (1988) J. Math. Chem. 2 197.

    Google Scholar 

  27. Krivka, P., Jerieevie, Z. and Trinajstié, N. (1986) Int. J. Quantum Chem.: Quantum Chem. Symp. 19 129.

    Google Scholar 

  28. Nikolie, S., Trinajstié, N., Mihalie, Z. and Carter, S. (1991) Chem. Phys. Lett. 179 21.

    Google Scholar 

  29. Hückel, E. (1932) Z. Phys. 60, 204.

    Google Scholar 

  30. Streiwieser, Jr., A. (1961) Molecular Orbital Theory for Organic Chemists, Wiley, New York.

    Google Scholar 

  31. Heilbronner, E. and Bock, H. (1976) The HMO Model and Its Applications, Wiley, London.

    Google Scholar 

  32. Bloch, F. (1929) Z. Phys. 52 555; (1930) ibid. 61 206.

    Google Scholar 

  33. Ruedenberg, K. (1954) J. Chem. Phys. 22 1878.

    Google Scholar 

  34. Ruedenberg, K. (1961) J. Chem. Phys. 34 1861.

    CAS  Google Scholar 

  35. Trinajstie, N. (1977) in G.A. Segal (ed.) Semiempirical Methods of Electronic Structure Calculations. Part A. Techniques, Vol. 7, Plenum Press, New York, p. 1.

    Google Scholar 

  36. Cvetkovie, D., Gutman, I. and Trinajstié, N. (1974) Chem. Phys. Lett. 29 65.

    Google Scholar 

  37. Herndon, W.C. (1974) Tetrahedron Lett. 671.

    Google Scholar 

  38. Zivkovie, T., Trinajstié, N. and Randié, M. (1975) Mol. Phys. 30, 517.

    Google Scholar 

  39. Longuet-Higgins, H.C. (1950) J. Chem. Phys. 18 265.

    CAS  Google Scholar 

  40. Clar, E., Kemp, W. and Stewart, D.C. (1958) Tetrahedron 3 36.

    Google Scholar 

  41. Fukui, K. (1970) Topics Curr. Chem. 15 1.

    Google Scholar 

  42. Fukui, K. (1971) Acc. Chem. Res. 4, 57.

    CAS  Google Scholar 

  43. Fukui, K. (1975) Theory of Orientation and Stereoselection, Springer, Berlin.

    Google Scholar 

  44. Fleming, I. (1976) Frontier Orbitals and Organic Chemical Reactions, Wiley, London.

    Google Scholar 

  45. Fukui, K. (1982) Science 218 747.

    CAS  Google Scholar 

  46. Fukui, K. (1982) Angew. Chem. Int. Edit. Engl. 21 801.

    Google Scholar 

  47. Polansky, O.E. and Zander, M. (1982) J. Mol. Struct 84 361.

    CAS  Google Scholar 

  48. Polansky, O.E. (1984) J. Mol. Struct 113 281.

    CAS  Google Scholar 

  49. Polansky, O.E. (1986) in N. Trinajstié (ed.), Mathematics and Computational Concepts in Chemistry, Horwood, Chichester, p. 262.

    Google Scholar 

  50. Polansky, O.E. (1989) in A. Graovac (ed.), MATH/CHEM/COMP 1988, Elsevier, Amsterdam, p. 65.

    Google Scholar 

  51. Polansky, O.E. (1990) in Z.B. Maksié (ed.), Theoretical Models of Chemical Bonding. Part 1: Atomic Hypothesis and the Concept of Molecular Structure, Springer, Berlin, p. 29.

    Google Scholar 

  52. Ref. 4, p. 155.

    Google Scholar 

  53. Heilbronner, E. (1953) Helv. Chim. Acta 36 170.

    CAS  Google Scholar 

  54. Graovac, A., Gutman, I. and Polansky, O.E. (1984) Monat. Chem. 115 1.

    CAS  Google Scholar 

  55. Motoc, I., Silverman, J.N. and Polansky, O.E. (1983) Phys. Rev. A28 3673.

    Google Scholar 

  56. Motoc, I., Silverman, J.N. and Polansky, O.E. (1984) Chem. Phys. Lett. 103 285.

    CAS  Google Scholar 

  57. Motoc, I. and Polansky, O.E. (1984) Z. Naturforsch 39b 1053.

    CAS  Google Scholar 

  58. Motoc, I., Silverman, J.N., Polansky, O.E. and Olbrich, G. (1985) Theoret. Chim. Acta 67 63.

    CAS  Google Scholar 

  59. Clar, E. (1964) Polycyclic Hydrocarbons, Academic, London.

    Google Scholar 

  60. Clar, E. and Schmidt, W. (1977) Tetrahedron 33 2093.

    CAS  Google Scholar 

  61. Hückel, E. (1932) Z. Physik 76 628.

    Google Scholar 

  62. Moffitt, W. (1950) Proc. Roy. Soc. (London) A 200 414.

    Google Scholar 

  63. Walsh, A.D. (1953) J. Chem. Soc. 2260.

    Google Scholar 

  64. Walsh, A.D. (1953) J. Chem. Soc., 2265; (1953) ibid. 2288.

    Google Scholar 

  65. Fukui, K., Yonezawa, T. and Shingu, H. (1952) J. Chem. Phys. 20 722.

    CAS  Google Scholar 

  66. Fukui, K., Yonezawa, T., Nagata, C. and Shingu, H. (1954) J. Chem. Phys. 22 1433.

    CAS  Google Scholar 

  67. Dewar, M.J.S. (1952) J. Amer. Chem. Soc. 74 3341; (1952) ibid. 74 3345; (1952) ibid. 74 3350; (1952) ibid. 74 3353; (1952) ibid. 74 3357.

    CAS  Google Scholar 

  68. Woodward, R.B. and Hoffmann, R. (1971) The Conservation of Orbital Symmetry, VCH, Weinheim.

    Google Scholar 

  69. Coulson, C.A. and Rushbrooke, G.S. (1940) Proc. Cambridge Philos. Soc. 36 193. A nice account about the discovery of the Pairing Theorem is given by Mallion, R.B. and Rouvray, D.H. (1990) in J. Math. Chem. 5 1.

    Google Scholar 

  70. Ruedenberg, K. and Scherr, C.W. (1953) J. Chem. Phys. 21 1565.

    CAS  Google Scholar 

  71. Ruedenberg, K. (1954) J. Chem. Phys. 22 1878.

    CAS  Google Scholar 

  72. Gutman, I., Knop, J.V. and Trinajstié, N. (1974) Z. Naturforsch 29b 80.

    Google Scholar 

  73. Gutman, I. (1979) Z. Naturforsch 35a 458.

    Google Scholar 

  74. Bonchev, D., Mekenyan, O. and Trinajstié, N. (1980) Int J. Quantum Chem. 17 845.

    CAS  Google Scholar 

  75. Kiang, Y.-s. and Chen, E.-t. (1983) Pure Appl. Chem. 55 283.

    CAS  Google Scholar 

  76. Hall, G.G. (1977) Mol. Phys. 33, 551.

    CAS  Google Scholar 

  77. Gutman, I. and Rouvray, D.H. (1979) Chem. Phys. Lett 62 384.

    CAS  Google Scholar 

  78. Graovac, A. and Gutman, I. (1980) Croat. Chem. Acta 53 45.

    CAS  Google Scholar 

  79. Coulson, C.A. and Streitwieser, Jr., A. (1965) Dictionary of n-Electron Calculations, Freeman, San Francisco.

    Google Scholar 

  80. Graovac, A., Gutman, I., Trinajstié, N. and Zivkovie, T. (1972) Theoret. Chim Acta 26 67.

    CAS  Google Scholar 

  81. Wilcox, Jr., C.F. (1968) Tetrahedron Lett. 795.

    Google Scholar 

  82. Wilcox, Jr., C.F. (1969) J. Amer. Chem. Soc. 91 2732.

    CAS  Google Scholar 

  83. Klein, D.J., Schmalz, T.G., El-Basil, S., Randie, M. and Trinajstié, N. (1988) L Mol. Struct. (Theochem) 179 99.

    Google Scholar 

  84. Dias, J.R. (1990) J. Mol. Struct. (Theochem) 206 1.

    Google Scholar 

  85. John, P. (1991) J. Mol. Struct. (Theochem) 231 379.

    Google Scholar 

  86. Trinajstié, N., Nikolie, S., Knop, J.V., Müller, W.R. and Szymanski, K. (1991) Computational Chemical Graph Theory: Characterization, Enumeration and Generation of Chemical Structures by Computer Methods, Simon & Schuster, New York.

    Google Scholar 

  87. Parr, R.G. and Pearson, R.G. (1983) J. Amer. Chem. Soc. 105 7512.

    CAS  Google Scholar 

  88. Pearson, R.G. (1986) Proc. Natl. Acad. Sci. USA 83 8440.

    CAS  Google Scholar 

  89. Zhou, Z., Parr, R.G. and Garst, J.F. (1988) Tetrahedron Lett. 4843.

    Google Scholar 

  90. Zhou, Z. and Parr, R.G. (1989) J. Amer. Chem. Soc. 111 7371.

    CAS  Google Scholar 

  91. Zhou, Z. and Navangul, H.V. (1990) J. Phys. Org. Chem. 3 784.

    CAS  Google Scholar 

  92. Pearson, R.G. (1987) J. Chem. Educ. 64 561.

    CAS  Google Scholar 

  93. e.g., Amié, D. and Trinajstié, N. (1991) J. Chem. Soc. Perkin Trans. II 891.

    Google Scholar 

  94. Gimarc, B.M. (1983) J. Amer. Chem. Soc. 105 1979.

    CAS  Google Scholar 

  95. Longuet - Higgins, H.C., Rector, C.W. and Platt, J.R. (1950) J. Chem. Phys. 18 1174.

    CAS  Google Scholar 

  96. Gimarc, B.M. and Joseph, J.J. (1984) Angew. Chem. Int. Edit. Engl. 23 506.

    Google Scholar 

  97. Gimarc, B.M. and Ott, J.J. (1986) in N. Trinajstié (ed.), Mathematics and Computational Concepts in Chemistry, Horwood, Chichester, p. 74.

    Google Scholar 

  98. Gimarc, B.M. and Ott, J.J. (1986) J. Amer. Chem. Soc. 108 4298.

    CAS  Google Scholar 

  99. Gimarc, B.M. and Ott, J.J. (1986) J. Amer. Chem. Soc. 108 4303.

    Google Scholar 

  100. Ott, J.J. and Gimarc, B.M. (1986) J. Comput. Chem. 7 673.

    CAS  Google Scholar 

  101. Gimarc, B.M. and Ott, J.J. (1986) Inorg. Chem. 25 83; (1986) ibid 25 2708; (1989) ibid 28 2560.

    Google Scholar 

  102. Gimarc, B.M. and Ott, J.J. (1987) J. Amer. Chem. Soc. 109 1388; (1990) ibid 112 2597.

    Google Scholar 

  103. Gimarc, B.M. and Ott, J.J. (1991) Croat. Chem. Acta 64 493.

    CAS  Google Scholar 

  104. Aihara, J.-i. (1988) Bull. Chem. Soc. Japan 61 2309.

    CAS  Google Scholar 

  105. Katz, T.J. and Rosenberger, M. (1962) J. Amer. Chem. Soc. 84 865.

    CAS  Google Scholar 

  106. Ghaisas, VV. and Tilak, B.D. (1965) Proc. Indian Acad. Sci. 39A 14.

    Google Scholar 

  107. Gronowitz, S., Rudén, U. and Gestblom, B. (1963) Arkiv Kemi 20 297.

    CAS  Google Scholar 

  108. Wynberg, H. and Zwanenburg, D.J. (1967) Tetrahedron Lett. 761.

    Google Scholar 

  109. Litvinov, V.P. and Gold’farb, Y.L. (1976) Adv. Heterocycl. Chem. 19 123.

    CAS  Google Scholar 

  110. Hoffmann, R. (1963) J. Chem. Phys. 39 1397.

    CAS  Google Scholar 

  111. Gimarc, B.M. private communication.

    Google Scholar 

  112. Rein, R., Fukuda, N., Win, H., Clarke, G.A. and Harris, F.E. (1966) J. Chem. Phys. 45 4743.

    CAS  Google Scholar 

  113. von Schnering, H.G. and Menge, G. (1981) Z. Anorg. Allg. Chem. 481 33.

    Google Scholar 

  114. Hassel, O. and Viervoll, H. (1947) Acta Chem. Scand. 1 149.

    CAS  Google Scholar 

  115. Akisin, P.A., Rambidi, N.G. and Ezov, S.Y. (1960) Zh. Neorg. Khim. 5 747.

    Google Scholar 

  116. Whitfield, J. (1970) J. Chem. Soc. A 1800.

    Google Scholar 

  117. Blachnik, R. and Wickel, U. (1983) Angew. Chem. Int. Edit. Engl. 22 317.

    Google Scholar 

  118. Livingstone, R.L. and Rao, C.N.R. (1959) J. Amer. Chem. Soc. 81 285.

    Google Scholar 

  119. Sommer, A., White, D., Levinsky, M.J. and Mann, D.E. (1963) J. Chem. Phys. 38 47.

    Google Scholar 

  120. Pierce, L., Nelson, R. and Thomas, C. (1965) J. Chem. Phys. 43 3423.

    CAS  Google Scholar 

  121. Brown, R.D. (1952) Ouart. Rev. 6 63.

    CAS  Google Scholar 

  122. Wheland, G.W. (1942) J. Phys. Chem. 64 900.

    CAS  Google Scholar 

  123. Ref. 8, p. 123.

    Google Scholar 

  124. Murrell, J.N. and Harget, A.J. (1972) SCF MO Theory of Molecules, WileyInterscience, London, p. 77.

    Google Scholar 

  125. e.g., Zhou, Z. and Parr, R.G. (1990) J. Amer. Chem. Soc. 112 5720.

    Google Scholar 

  126. Gutman, I., Trinajstie, N. and Wilcox, Jr., C.F. (1975) Tetrahedron 31 143.

    CAS  Google Scholar 

  127. Wilcox, Jr., C.F., Gutman, I. and Trinajstié, N. (1975). Tetrahedron 31 147.

    CAS  Google Scholar 

  128. Dewar, M.J.S. and Sampson, R.J. (1956) J. Chem. Soc. 2789.

    Google Scholar 

  129. Dewar, M.J.S., Mole, T. and Warford, E.W.T. (1956) J. Chem. Soc. 3581.

    Google Scholar 

  130. Leffler, J.E. and Grunwald, E. (1963) Rates and Equilibria of Organic Reactions, Wiley, New York.

    Google Scholar 

  131. Biermann, D. and Schmidt, W. (1980) Israel J. Chem. 20 312.

    CAS  Google Scholar 

  132. Szentpály, L.v. and Herndon, W.C. (1984) Croat. Chem. Acta 57 1621.

    Google Scholar 

  133. Zander, M. (1990) Topics Curr. Chem. 153 101.

    CAS  Google Scholar 

  134. Graovac, A. and Trinajstié, N. (1975) Croat. Chem. Acta 47 95.

    CAS  Google Scholar 

  135. Graovac, A. and Trinajstié, N. (1976) J. Mol. Struct 30 416.

    CAS  Google Scholar 

  136. Klein, D.J., Cravey, M.J. and Hite, G.E. (1991) Polycyclic Aromatic Compounds 2, 163.

    CAS  Google Scholar 

  137. Plavšić, D., Trinajstić, N. and Klein, D.J. (1992) Croat. Chem. Acta 65 279.

    Google Scholar 

  138. Kroto, H.J. (1992) Angew. Chem. Int. Edit. Engl. 31 111.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Trinajstić, N., Mihalić, Z., Graovac, A. (1994). The Interplay Between Graph Theory and Molecular Orbital Theory. In: Bonchev, D., Mekenyan, O. (eds) Graph Theoretical Approaches to Chemical Reactivity. Understanding Chemical Reactivity, vol 9. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1202-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1202-4_2

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4526-1

  • Online ISBN: 978-94-011-1202-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics