Image 2.0 pp 283-318 | Cite as

An Atmosphere-Ocean Model for Integrated Assessment of Global Change



This paper describes the atmosphere-ocean system of the integrated model IMAGE 2.0. The system consists of four linked models, for atmospheric composition, atmospheric climate, ocean climate and for ocean biosphere and chemistry. The first model is globally averaged, the latter are zonally averaged with additional resolution in the vertical. The models reflect a compromise between describing the physical, chemical and biological processes and moderate computational requirements. The system is validated with direct observations for current conditions (climate, chemistry) and is consistent with results from General Circulation Model experiments. The system is used in the integrated setting of the IMAGE 2.0 model to give transient climate projections. Global surface temperature is simulated to increase by 2.5 K over the next century for socio-economic scenarios with continuing economic and population growth. In a scenario study with reduced ocean circulation, the climate system and the global C cycle are found to be appreciably sensitive to such changes.


climate model atmospheric chemistry oceanic C cycle scenario evaluation integrated model 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alcamo, J., G.J.J Kreileman, M.S. Krol and G. Zuidema: 1994a, Modeling the global society-biosphere-climate system, Part 1. Model description and testing, Wat. Air Soil Pollut., 76 (this volume).Google Scholar
  2. Alcamo, J., G.J. van den Born, A.F. Bouwman, B J. de Haan, K. Klein Goldewijk, O. Klepper, J. Krabec, J.G.J Olivier, A.M.C Toet, HJ.M. de Vries and H.J. van der Woerd: 1994b, Modeling the global societybiosphere-climate system, Part 2. Computed scenarios, Wat. Air Soil Pollut., 76 (this volume).Google Scholar
  3. Baumgartner, A. and E. Reichel: 1975, Die Weltwasserbilanz, Oldenbourg.Google Scholar
  4. Boer, G.J., (auK. Arpe, M. Blackburn, M. Déqué, W.L. Gates, T.L. Hart, H. le Treut, E. Roeckner, D.A. sheinin, I. Simmonds, R.N.B Smith, T. Tokioba, R.T. Wetherald and D. Williamson: 1991, An Intercomparison of the Climates Simulated by 14 Atmospheric General Circulation Models, Report No. 15, WMO/ISU World Climate Research Programme.Google Scholar
  5. Broecker, W.S. and T.H. Peng: 1982, Tracers in the Sea, Eldigo Press.Google Scholar
  6. Broecker, W.S., T.H. Peng, G. Ostlund and M. Stuiver: 1985, The distribution of bomb radiocarbon in the ocean, J. Geophys. Res., 90(C4): 6953–6970.CrossRefGoogle Scholar
  7. Carissimo, B. C., (auA.H. Oort and T.H. Vonder Haar: 1985, Estimating the meridional energy transport in the atmosphere and ocean, J. Phys. Ocean., 15: 82–91.CrossRefGoogle Scholar
  8. Charlson, R.J., J. Langner, H. Rodhe, C.B. Leovy and S.G. Warren: 1991, Perturbation of Northern Hemisphere radiative balance by backscattering from anthropogenic sulfate aerosols, Tellus, 43AB: 152–163.Google Scholar
  9. Chou, M.-D., L. Peng and A. Arking: 1982, Climate studies with a multi-layer energy balance model. Part II: the role of feedback mechanisms in the CO2 problem, J. Atm. Sci., 39: 2657–2666.CrossRefGoogle Scholar
  10. Coakley, J.A. jr, R.D. Cess and F.B. Yurevitch: 1983, The effect of tropospheric aerosols on the Earths radiation budget: a parameterization for climate models, J. Atm. Sci., 40: 116–138.CrossRefGoogle Scholar
  11. Curran, R.J., R. Wexler and M.L. Nack: 1978, Albedo Climatology Analysis and the Determination of Fractional Cloud Cover, Technical Memorandum 79576, NASA, 52 pp.Google Scholar
  12. Ellis, J.S. and T.H. Vonder Haar: 1976, Zonal Average Earth Radiation Budget Measurements from Satelites for Climate Studies, Paper 240, Colorado State Univ.Google Scholar
  13. Eppley, R.W.: 1972, Temperature and phytoplankton growth in the sea, Fish. Bull, 70: 1063–1085.Google Scholar
  14. Gieskes, J.M.: 1974, The carbonate chemistry of the ocean, In: E.D. Goldberg (ed), The Sea, Wiley &Sons, pp. 125–131.Google Scholar
  15. Goudriaan, J.: 1990, Atmospheric CO2, global carbon fluxes and the biosphere, In: R. Rabbinge (ed), Theoretical Production Ecology: Reflections and Prospects, Wageningen, pp. 17–37.Google Scholar
  16. Guthrie, P.D. and G. Yarwood: 1991, Analysis of the Intergovernmental Panel of Climate Change (IPCC) Future Methane Emissions, Report SYS-APP-91/114, Systems Applications International.Google Scholar
  17. Harvey, L.D.D.: 1988, Asemianalytic energy balance climate model with explicit sea ice and snow physics, J. Clim., 1: 1065–1085.CrossRefGoogle Scholar
  18. Harvey, L.D.D. and S.H. Schneider: 1985, Transient climate response to external forcing on 104-104 year time scales, Part 1: Experiments with globally averaged, coupled, atmosphere and ocean energy balance models, J. Geophys. Res., 90(D1): 2191–2205.CrossRefGoogle Scholar
  19. IPCC: 1990, J.T. Houghton, G.J. Jenkins and J.J. Ephraums (eds), Climate Change. The IPCC Scientific Assessment, Cambridge Univ. Press.Google Scholar
  20. IPCC: 1992, J.T. Houghton, B.A. Callendar and S.K. Varney (eds), Climate Change 1992. The Supplementary Report to the IPCC Scientific Assessment, Cambridge Univ. Press.Google Scholar
  21. Jaeger, L.: 1976, Monatskarten des Niederslags für die ganze Erde, Ber. d. Dt. Wetterdienstes, 139(18).Google Scholar
  22. Jonas, M., K. Olendrzynski, J. Krabec and R. Shaw: 1992, IIASA’s Work on Climate Change: Assessing Environmental Impacts, Report SR-92-9, IIASA, Laxenburg, Austria.Google Scholar
  23. Keir, R.S.: 1988, On the late Pleistocene ocean geochemistry and circulation, Paleoceanography, 3(4): 413–445.CrossRefGoogle Scholar
  24. Klein Goldewijk, K., J.G. van Minnen, G.J.J Kreileman, M. Vloedbeld and R Leemans: 1994, Simulating the carbon flux between terrestrial environment and the atmosphere, Wat. Air Soil Pollut., 76 (this volume).Google Scholar
  25. Klepper, O.: 1994, Modelling the oceanic food web using a quasi steady state approach, Ecol. Modelling, (in press).Google Scholar
  26. Klepper, O., B.J. de Haan and H. van Huet: 1994, Biochemical feedbacks in the oceanic carbon cycle, Ecol. Modelling, (in press).Google Scholar
  27. Klepper, O., B.J. de Haan, P. Saager and M.S. Krol: 1993, Oceanic uptake of anthropogenic CO 2, Report 481507004, RIVM, Bilthoven, the NetherlandsGoogle Scholar
  28. Kreileman, G.J.J. and A.F. Bouwman: 1994, Computing land use emissions of greenhouse gases, Wat. Air Soil Pollut., 76 (this volume).Google Scholar
  29. Krol, M.S.: 1994, Uncertainty analysis for the computation of greenhouse gas concentrations in IMAGE, In: J. Grasman and G. van Straten (eds), Predictability and nonlinear modelling in natural sciences and economics, Kluwer.Google Scholar
  30. Krol, M.S. and H.J. van der Woerd: 1994, Atmospheric computations for the evaluation of climate scenarios, Wat. Air Soil Pollut., 76 (this volume).Google Scholar
  31. Langner, J., H. Rodhe, P.J. Crutzen and P. Zimmermann: 1992, Anthropogenic influence on the distribution of tropospheric sulphate aerosol, Nature, 359: 712–716.CrossRefGoogle Scholar
  32. Lenderink, G. and R. J. Haarsma: 1993, Variability and multiple equilibria of the thermohaline circulation, associated with deep water formation, J. Phys. Ocean., submitted.Google Scholar
  33. Levitus, S.: 1982, Climatological Atlas of the World Ocean, Prof. Paper No. 13, NOAA, US Government Printing Office, Washington.Google Scholar
  34. MacKay, R.M. and M.A.K Khalil: 1991, Theory and development of a one dimensional time dependent radiative convective climate model, Chemosphere, 22 ***(3-4): 383–417.Google Scholar
  35. Maier-Reimer, E. and K. Hasselmann: 1987, Transport and storage of CO2 in the ocean — an inorganic ocean-circulation carbon cycle model, Clim. Dyn., 2: 63–90.CrossRefGoogle Scholar
  36. Mantoura, R.F.C. and E.M.S Woodward: 1983, Conservative behaviour of riverine dissolved organic carbon in the Severn Estuary: chemical and geochemical implications, Geochimica et Cosmochimica Acta, 47: 1293–1309.CrossRefGoogle Scholar
  37. Martin, J.H., G.A. Knauer, D.M. Karl and W.W. Broeknow: 1987, VERTEX: carbon cycling in the northeast Pacific, Deep-Sea Res., 34(2): 267–285.CrossRefGoogle Scholar
  38. Mikolajewicz, U., B.D. Santer and E. Maier-Reimer: 1990, Ocean response to greenhouse warming, Nature, 345: 589–593.CrossRefGoogle Scholar
  39. Neelin, J.D., M.A.F Latif, M.A. Allart, M.A. Cane, U. Cubash, W.L. Gates, P.R. Gent, M. Ghil, C. Gordon, N.-C. Lau, C.R. Mechoso, G.A. Meehl, J.M. Oberhuber, S.G.H Philander, P.S. Schopf, K.R. Sperber, A. Sterl, T. Tokioba, J. Tribbia, S.E. Zebiak: 1992, Tropical air-sea interaction in general circulation models, Clim. Dyn., 7: 73–104.CrossRefGoogle Scholar
  40. Oort, A.H.: 1983, Global Atmospheric Circulation Statistics, Prof. Paper No. 14, NOAA, U.S. Dept. Comm., Rockville, Md. U.S.A.Google Scholar
  41. Oort, A.H. and T.H. Vonder Haar: 1976, On the observed annual cycle in the ocean-atmosphere heat balance over the northern hemisphere, J. Phys. Ocean., 6(6): 781–800.CrossRefGoogle Scholar
  42. Orr, J.C.: 1993, Accord between ocean models predicting uptake of anthropogenic CO2, Water, Air, Soil Pollut., 70: 465–481.CrossRefGoogle Scholar
  43. Parsons, T.R., M. Takahashi and B. Hargrave: 1984, Biological oceanographie processes, Pergamon Press.Google Scholar
  44. Peng, L., M.-D. Chou and A. Arking: 1982, Climate studies with a multi-layer energy balance model. Part I: model description and sensitivity to the solar constant, J. Atm. Sci., 39(12): 2639–2656.CrossRefGoogle Scholar
  45. Peng, L., M.-D. Chou and A. Arking: 1987, Climate warming due to increasing atmospheric CO2: simulations with a multilayer coupled atmosphere-ocean seasonal energy balance model, J. Geophys. Res., 92(D5): 5505–5521.CrossRefGoogle Scholar
  46. Peng, T.S.: 1986, Uptake of anthropogenic CO2 by lateral transport models of the ocean based on the distribution of bomb-produced 14C, Radiocarbon, 28(2A): 363–375.Google Scholar
  47. Prather, M.J.: 1989, An Assessment Model for Atmospheric Composition, Conf. Publ. 3023, NASA, New York.Google Scholar
  48. Rasmussen, R.A. and M.A.K Khalil: 1981, Atmospheric methane (CH4): trends and seasonal cycles, J. Geophys. Res., 86: 9826–9832.CrossRefGoogle Scholar
  49. Roemer, M.G.M.: 1991, Ozone and the Greenhouse Effect, Report R91/227, IMW-TNO, Delft, the Netherlands.Google Scholar
  50. Rotmans, J.: 1990, IMAGE: an Integrated Model to Assess the Greenhouse Effect, Kluwer.Google Scholar
  51. Sarmiento, J.L. and E.T. Sundquist: 1992, Revised budget for the oceanic uptake of anthropogenic carbon dioxide, Nature, 356: 589–593.CrossRefGoogle Scholar
  52. Siegenthäler, U. and J.L. Sarmiento: 1993, Atmospheric carbon dioxide and the ocean, Nature, 365: 119–125.CrossRefGoogle Scholar
  53. Sellers, W.D.: 1965, Physical Climatology, Univ. Chicago Press.Google Scholar
  54. Smith, E.A. and M.R. Smith: 1987, J. Atmos. Sci, 44: 3210–3224.CrossRefGoogle Scholar
  55. Takahashi, T., W.S. Broecker and A.E. Bainbridge: 1981, Supplement to the alkalinity and total carbon dioxide concentration in the world oceans, In: Carbon Cycle Modeling, Wiley &Sons, pp. 159–199.Google Scholar
  56. Tans, P.P., I.Y. Fung and T. Takahashi: 1990, Observational constraints on the global atmospheric CO2 budget, Science, 247: 1431–1438.CrossRefGoogle Scholar
  57. Thompson, A.M., R.W. Stewart, M.A. Owens and J.A. Herwehe: 1989, Sensitivity of tropospheric oxidants to global chemical and climate change, Atm. Env., 23(3): 519–532.CrossRefGoogle Scholar
  58. de Vries, H.J.M., R.A. van den Wijngaart, G.J.J Kreileman, J.G.J Olivier and A.M.C Toet: 1994, Amodel for calculating regional energy use and emissions for evaluating global climate scenarios, Wat. Air Soil Pollut., 76 (this volume).Google Scholar
  59. Wigley, T.M.L. and S.C.B Raper: 1992, Implications for climate and sea level of revised IPCC emissions scenarios, Nature, 357: 293–300.CrossRefGoogle Scholar
  60. WMO: 1992, Scientific Assessment of Ozone Depletion-1991, Global Ozone Research and Monitoring Project, report No. 25, WMO.Google Scholar
  61. Wollast, R.: 1981, Interactions between major biochemical cycles in marine ecosystems, In: E. Likens (ed), Some Perspectives of Major Biochemical Cycles, Wiley &Sons, pp. 125–142.Google Scholar
  62. Wollast, R., F.T. Mackenzie and L. Chou (eds): 1993, Interactions of C, N, P and S Biogeochemical Cycles and Global Change, NATO ASI Series, Springer-Verlag.CrossRefGoogle Scholar
  63. Zuidema, G., G.J. van den Born, J. Alcamo and G.J.J Kreileman: 1994, Simulating changes in global land cover as affected by economic and climatic factors, Wat. Air Soil Pollut., 76 (this volume).Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1994

Authors and Affiliations

  1. 1.National Institute of Public Health and Environmental Protection(RIVM)Bilthoventhe Netherlands
  2. 2.International Institute for Applied Systems AnalysisLaxenburgAustria

Personalised recommendations