Skip to main content

Atmospheric Composition Calculations for Evaluation of Climate Scenarios

  • Chapter
Image 2.0

Abstract

The future radiative forcing by non-CO2 greenhouse gases depends strongly on the behavior of the OH radical, which represents the primary sink for CH4, CO and H(C)FCs in the atmosphere. We present a simple model to describe the changes in the concentration of the main greenhouse gases. The focus is on the description of the atmospheric chemistry of OH and the important tropospheric oxidant and greenhouse gas O3. Changes in the equilibrium concentrations of these oxidants will change the trends in the concentrations of greenhouse gases, especially CH4. The model is applied to the 1992 IPCC emissions scenarios, as well as to an IMAGE 2.0 scenario, based on “Conventional Wisdom” assumptions. We find the following major results: for the central estimate of emissions assuming no additional policies (IS92a), the concentration of CH4 keeps rising at rates similar to those observed over the last decades; results for the other IS92 scenarios range from stabilization early in the next century (IS92d) to an ever increasing rate of accumulation of CH4 in the atmosphere (IS92f), even though these scenarios assume no policy interventions. The IMAGE 2.0 Conventional Wisdom scenario is similar to IS92a before the year 2025; afterwards the expansion of agricultural area significantly decreases the emissions of hydrocarbons and NOx from savanna burning, not represented in the IS92 scenarios. This leads to stable levels of atmospheric CH4 after 2025.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alcamo, J., G.J.J Kreileman, M.S. Krol and G. Zuidema: 1994a, Modeling the global society-biosphere-climate system, Part 1: Model description and testing. Wat. Air Soil Pollut., 76 (this volume).

    Google Scholar 

  • Alcamo, J., G.J. van den Born, A.F. Bouwman, B. de Haan, K. Klein Goldewijk, O. Klepper, J. Krabec, R. Leemans, J.G.J Olivier, A.M.C Toet, H.J.M Vries, H J.M. van der Woerd: 1994b, Modeling the global societybiosphere-climate system, Part 2: Computed scenarios, Wat. Air Soil Pollut., 76 (this volume).

    Google Scholar 

  • Atkinson, R.: 1985, Kinetics and mechanisms of the gas-phase reactions of the hydroxyl radical with organic compounds under atmospheric conditions, Chem. Rev., 85: 69–201.

    Google Scholar 

  • Beck, J.P., C.E. Reeves, F.A.A.M. De Leeuw and A. Penkett: 1992, The effect of aircraft emissions on tropospheric ozone in the northern hemisphere, Atm. Env., 26A(1): 17–29.

    Google Scholar 

  • Brühl, C. and P. J. Crutzen: 1988, Scenarios of possible changes in atmospheric temperatures and ozone concentrations due to man’s activities, estimated with a one-dimensional coupled photochemical climate model, Clint. Dyn., 2: 173–203.

    Article  Google Scholar 

  • Guthrie, P. D. and G. Yarwood: 1991, Analysis of the Intergovernmental Panel of Climate Change (IPCC) Future Methane Emissions, Report SYS-APP-91/114, Systems Applications International.

    Google Scholar 

  • Haan, B.J. de, Jonas, M., Klepper, O., Krabec, J., Krol, M.S. and Olendrzynski, K.: 1994, An atmosphere-ocean model for integrated assessment of global change, Wat. Air Soil Pollut., 76 (this volume).

    Google Scholar 

  • Hough, A. M.: 1991, Development of a two-dimensional global tropospheric model: model chemistry. J. Geophys. Res., 96(D4): 7325–7362.

    Article  Google Scholar 

  • Hough, A. M. and R. G. Derwent: 1990, Changes in the global concentration of tropospheric ozone due to human activities, Nature, 344: 645–648.

    Article  Google Scholar 

  • IPCC: 1990, J.T. Houghton, G.J. Jenkins and J.J. Ephraums (eds), Climate Change. The IPCC Scientific Assessment, Cambridge Univ. Press.

    Google Scholar 

  • IPCC: 1991, Climate Change: The IPCC Response Strategies, Island Press.

    Google Scholar 

  • IPCC: 1992, J.T. Houghton, B.A. Callander and S.K. Varney (eds), Climate Change 1992. The Supplementary Report to the IPCC Scientific Assessment, Cambridge Univ. Press.

    Google Scholar 

  • Isaksen, I.S.A. and Ø. Hov: 1987, Calculation of trends in the tropospheric concentration of O3, OH, CO, CH4 and NOx, Tellus, 39B: 271–285.

    Article  Google Scholar 

  • Klein Goldewijk, K., J.G. van Minnen, G.J.J Kreileman, M. Vloedbeld and R. Leemans: 1994, Simulating the carbon flux between terrestrial environment and the atmosphere, Wat. Air Soil Pollut., 76 (this volume).

    Google Scholar 

  • Kreileman, G.J.J. and A.F. Bouwman: 1994, Computing land use emissions of greenhouse gases, Wat. Air Soil Pollut., 75 (this volume).

    Google Scholar 

  • Krol, M.S.: 1994, Uncertainty analysis for the computation of greenhouse gas concentrations in IMAGE. In: J. Grasman and G. van Straten (eds), Predictability and Nonlinear Modelling in Natural Sciences and Economics, Kluwer.

    Google Scholar 

  • Liu, S.C., M. Trainer, F.C. Fehsenfeld, D.D. Parrish, E.J. Williams, D.W. Fahey, G. Hubler and P.C. Murphy: 1987, Ozone production in the rural troposphere and the implications for regional and global ozone distributions, J. Geoph. Res., 92(D4): 4191–4207.

    Article  Google Scholar 

  • Logan, J.A., MJ. Prather, S.C. Wofsy and M.S. McElroy: 1981, Tropospheric chemistry: a global perspective. J. Geophys. Res., 86: 7210–7254.

    Article  Google Scholar 

  • Madronich, S. and C. Granier: 1992, Impact of recent total ozone changes on tropospheric photodissociation, hydroxyl radicals, and ethane trends, Geophys. Res. Lett., 19: 465–467.

    Article  Google Scholar 

  • Mikolajevich, U., B.D. Santer and E. Maier-Reimer: 1990, Ocean response to greenhouse warming, Nature 345: 589–593.

    Article  Google Scholar 

  • Prather, M. and CM. Spivakovsky: 1990, Tropospheric OH and the lifetimes of hydrochlorofluorocarbons, J. Geophys. Res., 95: 18723–18729.

    Article  Google Scholar 

  • Prather, M. J.: 1989, An Assessment Model for Atmospheric Composition, NASA Conf. Publ. 3023, NASA, New York.

    Google Scholar 

  • Prinn, R., D. Cunnold, P. Simmonds, F. Alyea, R. Boldi, A. Crawford, P. Fraser, D. Gutzler, D. Hartley, R. Rosen and R. Rasmussen: 1992, Global average concentration and trend for hydroxyl radicals deduced from ALE/GAGE trichloroethane (methyl chloroform) data for 1978-1990, J. Geophys. Res., 97(D2): 2445–2461.

    Article  Google Scholar 

  • Roemer, M.G.M.: 1991, Ozone and the Greenhouse Effect, Report No. R 91/227, IMW/TNO, Delft, the Netherlands.

    Google Scholar 

  • Rotmans, J., M.G.J den Elzen, M.S. Krol, R.J. Swart and H. van der Woerd: 1992, Stabilizing atmospheric concentrations: towards international methane control, Ambio, 21(6): 404–413.

    Google Scholar 

  • Steele, L.P., E.J. Dlugokencky, P.M. Lang, P.P. Tans, R.C. Martin and K.A. Masarie: 1992, Slowing down of the global accumulation of atmospheric methane during the 1980s, Nature, 358: 313–316.

    Article  Google Scholar 

  • Talukdar, R.K., A. Mellouki, A.-M. Schmoltner, T. Watson, S. Montzka and A.R. Ravishankara: 1992, Kinetics of the OH reaction with methyl chloroform and its atmospheric implications, Science, 257: 227.

    Article  Google Scholar 

  • Thompson, A.M., R.W. Stewart, M.A. Owens and J.A. Herwehe: 1989, Sensitivity of tropospheric oxidants to global chemical and climate change, Atm. Env., 23(3): 519–532.

    Article  Google Scholar 

  • Thompson, A.M., M.A. Huntley and R.W. Stewart: 1990, Perturbations to tropospheric oxidants, 1985-2035 1. calculations of ozone and OH in chemically coherent regions, J. Geophys. Res., 95(D7): 9829–9844.

    Article  Google Scholar 

  • Thompson, A.M.: 1992, The oxidizing capacity of the earth’s atmosphere: probable past and future changes, Science, 256: 1157–1165.

    Article  Google Scholar 

  • Vaghjiani, G.L. and A.R. Ravishankara: 1991, New measurement of the rate coefficient for the reaction of OH with methane, Nature, 350: 406–409.

    Article  Google Scholar 

  • Vries, H.J.M. de, R.A. van den Wijngaart, G.J.J Kreileman, J.G.J Olivier and A.M.C Toet: 1994, Amodel for calculating regional energy use and emissions for evaluating global climate scenarios, Wat. Air Soil Pollut., 76 (this volume).

    Google Scholar 

  • Wigley, T.M.L. and S.C.B Raper: 1992, Implications for climate and sea level of revised IPCC emissions scenarios, Nature, 357: 293–300.

    Article  Google Scholar 

  • WMO: 1992, Scientific Assessment of Ozone Depletion-1991, Global Ozone Research and Monitoring Project, Rep. No. 25., WMO.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Krol, M.S., van der Woerd, H.J. (1994). Atmospheric Composition Calculations for Evaluation of Climate Scenarios. In: Alcamo, J. (eds) Image 2.0. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1200-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1200-0_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4525-4

  • Online ISBN: 978-94-011-1200-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics