Skip to main content
Book cover

Image 2.0 pp 199–230Cite as

Simulating the Carbon Flux Between the Terrestrial Environment and the Atmosphere

  • Chapter
  • 70 Accesses

Abstract

A Terrestrial C Cycle model that is incorporated in the Integrated Model to Assess the Greenhouse Effect (IMAGE 2.0) is described. The model is a geographically explicit implementation of a model that simulates the major C fluxes in different compartments of the terrestrial biosphere and between the biosphere and the atmosphere. Climatic parameters, land cover and atmospheric C concentrations determine the result of the dynamic C simulations. The impact of changing land cover patterns, caused by anthropogenic activities (shifting agriculture, de- and afforestation) and climatic change are modeled implicitly. Feedback processes such as CO2 fertilization and temperature effects on photosynthesis, respiration and decomposition are modeled explicitly. The major innovation of this approach is that the consequences of climate change are taken into account instantly and that their results can be quantified on a global medium-resolution grid. The objectives of this paper are to describe the C cycle model in detail, present the linkages with other parts of the IMAGE 2.0 framework, and give an array of different simulations to validate and test the robustness of this modeling approach. The computed global net primary production (NPP) for the terrestrial biosphere in 1990 was 60.6 Gt C a-1, with a global net ecosystem production (NEP) of 2.4 Gt C a-1. The simulated C flux as result from land cover changes was 1.1 Gt C a-1, so that the terrestrial biosphere in 1990 acted as a C sink of 1.3 Gt C a-1. Global phytomass amounted 567.5 Gt C and the dead biomass pool was 1517.7 Gt C. IMAGE 2.0 simulated for the period 1970 – 2050 a global average temperature increase of 1.6 °C and a global average precipitation increase of 0.1 mm/day. The CO2 concentration in 2050 was 522.2 ppm. The computed NPP for the year 2050 is 82.5 Gt C a-1, with a NEP of 8.1 Gt C a-1. Projected land cover changes result in a C flux of 0.9 Gt C a-1, so that the terrestrial biosphere will be a strong sink of 7.2 Gt C a-1. The amount of phytomass hardly changed (600.7 Gt C) but the distribution over the different regions had. Dead biomass increased significantly to 1667.2 Gt C.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alcamo, J., G.J.J Kreileman, M. Krol and G. Zuidema: 1994, Modeling the global society-biosphere-climate system, Part 1: model description and testing. Wat. Air Soil Pollut., 76 (this volume).

    Google Scholar 

  • Atjay, G.L., P. Ketner and P. Duvigneaud (eds): 1979, Terrestrial Primary Production and Phytomass, Wiley and Sons, pp. 129–187.

    Google Scholar 

  • Bazzaz, F.A.: 1990, The response of natural ecosystems to the rising global CO2 levels. Annu. Rev. Ecol. Syst., 21: 167–196.

    Article  Google Scholar 

  • Bazzaz, F.A. and R.W. Carlson: 1984, The response of plants to elevated CO2. I. Competition among an assemblage of annuals at two levels of soil moisture. Oecologia, 62: 196–198.

    Article  Google Scholar 

  • Bouwman, A.F.: 1989, The role of soils and land use in the greenhouse effect. Netherlands Journal of Agricultural Science, 37: 13–19.

    Google Scholar 

  • Box, E.O.: 1988, Estimating the seasonal carbon source-sink geography of a natural, steady-state terrestrial biosphere. Appl. Meteor., 27(10): 1109–1124.

    Article  Google Scholar 

  • Carlson, R.W. and F.A. Bazzaz: 1980, The effects of elevated CO2 concentrations on growth, photosynthesis, transpiration and water use efficiency of plants, In: J.J. Singh and A. Deepak (eds), Environmental and Climatic Impact of Coal Utilization, Academic Press, New York.

    Google Scholar 

  • Carlyle, J.C. and U.B. Than: 1988, Abiotic controls of soil respiration beneath an eighteen-year-old Pinus radiata stand in South-eastern Australia. Journal of Ecology, 76: 654–662.

    Article  Google Scholar 

  • Cooper, C.F.: 1983, Carbon storage in managed forests. Can. J. For. Res., 13: 155–166.

    Article  Google Scholar 

  • Cramer, W. and A.M. Solomon: 1993, Climatic classification and future global redistribution of agricultural land. Clim. Res., 3(1-2): 97–110.

    Article  Google Scholar 

  • Detwiler, R.P. and C.A.S Hall: 1988, Tropical forests and the global carbon cycle. Science, 239: 42–47.

    Article  Google Scholar 

  • Dewar, R.C.: 1990, Amodel of carbon storage in forests and forest products. Tree Physiology, 6: 417–428.

    Article  Google Scholar 

  • Dewar, R.C.: 1991, Analytical model of carbon storage in the trees, soils and wood products of managed forests. Tree Physiology, 8(3): 239–258.

    Article  Google Scholar 

  • Dewar, R.C. and M.G.R Cannell: 1992, Carbon sequestration in the trees, products and soils of forest plantations: an analysis using UK examples. Tree Physiology, 11: 49–71.

    Article  Google Scholar 

  • Eamus, D.: 1991, The interaction of rising CO2 and temperatures with water use efficiency. Plant, Cell Environm., 14: 843–852.

    Article  Google Scholar 

  • Emanuel, W.R., G.G. Killough, W.M. Post and H.H. Shugart: 1984, Modeling terrestrial ecosystems and the global carbon cycle with shifts in carbon storage capacity by land use change. Ecology, 65: 970–983.

    Article  Google Scholar 

  • Esser, G.: 1987, Sensitivity of global carbon pools and fluxes to human and potential climate impacts. Tellus, 39B(3): 245–260.

    Article  Google Scholar 

  • Esser, G.: 1991, Osnabrück Biosphere model: structure, construction, results, In: G. Esser and D. Overdieck (eds), Modern Ecology, Basic and Applied Aspects, Elsevier, Amsterdam, pp.679-709.

    Google Scholar 

  • FAO: 1993, Forest Resources Assessment 1990 Tropical Countries. 112, Food and Agricultural Organization of the United Nations, Rome, Italy.

    Google Scholar 

  • FAO/UNESCO: 1974, Soil Map of the World, 1: 5,000,000, Food and Agriculture Organisation of the United Nations.

    Google Scholar 

  • Fearnside, P.M.: 1991, Deforestation in Brazilian Amazonia as a source of greenhouse gases. Proceedings of Regional Conference on Global Warming and Sustainable Development: Perspectives from Developing countries, Sao Paulo.

    Google Scholar 

  • Flint, E.P. and J.F. Richards: 1994, Trends in carbon content of vegetation in South and Southeast Asia with changes in land use, In: V.H. Dale (eds), Effects of Land-Use Change on Atmospheric CO 2 Concentrations, Springer-Verlag, New York, pp.201–299.

    Chapter  Google Scholar 

  • Goudriaan, J.: 1992, Biosphere structure, carbon sequestering potential and the atmospherci 14C carbon record. J. Exp. Bot., 32(253): 1111–1119.

    Article  Google Scholar 

  • Goudriaan, J. and H.E. de Ruiter: 1983, Plant growth in response to CO2 enrichment, at two levels of nitrogen and phosphorus supply. 1. Dry matter, leaf area and development. Netherl. J. Agricult. Sci., 31: 157–169.

    Google Scholar 

  • Goudriaan, J. and P. Ketner: 1984, Asimulation study for the global carbon cycle, including man’s impact on the biosphere. Clim. Change, 6: 167–192.

    Article  Google Scholar 

  • Houghton, J.T., B.A. Callander and S.K. Varney (eds): 1992, Climate Change 1992. The Supplementary Report to the IPCC Scientific Assessment, Cambridge University Press, 200 pp.

    Google Scholar 

  • Houghton, J.T., G.J. Jenkins and J.J. Ephraums (eds): 1990, Climate Change: The IPCC Scientific Assessment, Cambridge University Press, 365 pp.

    Google Scholar 

  • Houghton, R.A., J.E. Hobbie, J.M. Melillo, B. Moore, B.J. Peterson, G.R. Shaver and G.M. Woodwell: 1983, Changes in the carbon content of terrestrial biota and soils between 1860 and 1980: a net release of CO2 to the atmosphere. Ecol. Monogr., 53(3): 235–262.

    Article  Google Scholar 

  • Kauppi, P., K. Mielikäinen and K. Kuusela: 1992, Biomass and carbon budget of European forests, 1971 to 1990. Science, 256: 70–74.

    Article  Google Scholar 

  • King, A.W.: 1986, The seasonal exchange of carbon dioxide between the atmosphere and the terrestrial biopshere: extrapolation from site-specific models to regional models., Dissertation, 271 pp., Univeristy of Tennessee.

    Google Scholar 

  • King, A.W., W.R. Emanuel and W.M. Post: 1992, Adynamic model of terrestrial carbon cycling response to land-use change, In: M. Kanninen (eds). Carbon Balance of Worlds Forested Ecosystems: Towards a Global Assessment, Joensuu, Finland.

    Google Scholar 

  • King, G.A. and R.P. Neilson: 1992, The transient response of vegetation to climate change: a potential source of CO2 to the atmosphere. In: J. Wisniewski and A.E. Lugo (eds). Natural sinks of CO 2, Palmas Del Mar, Puerto Rico

    Google Scholar 

  • Klein Goldewijk, C.G.M and M. Vloedbeld: 1994, The exchange of carbon dioxide between the atmosphere and the terrestrial biosphere in Latin America. Advances in Soil Science, in press.

    Google Scholar 

  • Kohlmaier, G.H., E.-O. Sire, A. Janecek, C.D. Keeling, S.C. Piper and R. Revelle: 1989, Modelling the seasonal contribution of a CO2 fertilization effect of the terrestrial vegetation to the amplitude increase on atmospheric CO2 at Mauna Loa Observatory. Tellus, 41B: 487–510.

    Article  Google Scholar 

  • Kolchugina, T.P. and T.S. Vinson: 1993, Carbon sources and sinks in forest biomes of the former soviet union. Global Biogeochemical Cycles, 7(2): 291–304.

    Article  Google Scholar 

  • Körner, C.: 1993, CO2 fertilization: The great uncertainty in future vegetation development, In: A.M. Solomon and H.H. Shugart (eds), Vegetation Dynamics and Global Change, Chapman and Hall, New York, pp.53–70.

    Chapter  Google Scholar 

  • Kortleven, J.: 1963, Kwantitatieve aspecten van humusopbouw en humusafbraak, Landbouwhogeschool, Wageningen, pp.

    Google Scholar 

  • Kreileman, G.J.J. and A.F. Bouwman: 1994, Computing land use emissions of greenhouse gases. Wat. Air Soil Pollut., 76 (this volume).

    Google Scholar 

  • Krol, M.S. and H. van der Woerd: 1994, Simplified calculation of atmospheric concentration of greenhouse gases and other constituents for evaluation of climate scenarios. Wat. Air Soil Pollut., 76 (this volume).

    Google Scholar 

  • Kurz, W.A., M.J. Apps, T.M. Webb and P.J. McNamee: 1992, The carbon budget of the Canadian forest sector: Phase I. 0-662-19913-8, Northern Forestry Centre, Edmonton, Alberta, Canada.

    Google Scholar 

  • Larcher, W.: 1980, Physiological Plant Ecology, Springer-Verlag, 303 pp.

    Google Scholar 

  • Lashof, D.A.: 1989, The dynamics greenhouse: Feedback proceses that may influence future concentrations of atmospheric trace gases and climatic change. Clim. Change, 14: 213–214.

    Article  Google Scholar 

  • Leemans, R.: 1991, Sensitivity analysis of a forest succession model. Ecol. Mod., 53: 247–262.

    Article  Google Scholar 

  • Leemans, R.: 1992, Modelling ecological and agricultural impacts of global change on a global scale. J. Sci. Ind. Res., 51: 709–724.

    Google Scholar 

  • Leemans, R. and W. Cramer: 1991, The IIASA database for mean monthly values of temperature, precipitation and cloudiness on a global terrestrial grid. Research Report RR-91-18, International Institute of Applied Systems Analysis, Laxenburg, Austria.

    Google Scholar 

  • Leemans, R. and G.J. van den Born: 1994, Determining the potential global distribution of natural vegetation, crops and agricultural productivity. Wat. Air Soil Pollut., 76 (this volume).

    Google Scholar 

  • Long, S.P.: 1991, Modification of the response of photosynthetic productivity to rising temperature by atmospheric CO2 concentrations: Has its importance been underestimated? Plant Cell Environm., 14: 729–739.

    Article  Google Scholar 

  • McGuire, A.D., J.M. Melillo, L.A. Joyce, D.W. Kicklighter, A.L. Grace, B. Moore III and C.J. Vörösmarty: 1991, Application of the terrestrial ecosystem model to estimate carbon and nitrogen dynamics for potential vegetation in North America, The Ecosystems Center, Marine Biological Laboratory, Woods Hole, Massachusetts, USA.

    Google Scholar 

  • McGuire, A.D., M. Melillo, L.A. Joyce, D.W. Kicklighter, A.L. Grace, B. Moore III and C.J. Vorosmarty: 1992, Interactions between carbon and nitrogen dynamics in estimating net primary productivity for potential vegetation in North America. Global Biogeochemical Cycles, 6: 101–124.

    Article  Google Scholar 

  • Melillo, J.M., T.V. Callaghan, F.I. Woodward and E. Salati: 1990, Effects on ecosystems, In: J.T. Houghton, G.J. Jenkins and J.J. Ephraums (eds), Climate Change: The IPCC Scientific Assessment, Cambridge University Press, Cambridge, pp.283-310.

    Google Scholar 

  • Melillo, J.M., A.D. McGuire, D.W. Kicklighter, B. Moore III, C.J. Vorosmarty and A.L. Schloss: 1993, Global climate change and terrestrial net primary production. Nature, 363(6426): 234–239.

    Article  Google Scholar 

  • Meyers, N.: 1980, Conversion of tropical moist forests, National Academy of Sciences, USA.

    Google Scholar 

  • Miao, S.L., P.M. Wayne and F.A. Bazzaz: 1992, Elevated CO2 differentially alters the responses of co-occurring birch and maple seedlings to a moisture gradient. Oecologia, 90: 300–304.

    Google Scholar 

  • Mitchell, J.F.B., S. Manabe, V. Meleshko and T. Tokioka: 1990, Equilibrium climate change — and its implications for the future, In: J.T. Houghton, G.J. Jenkins and J.J. Ephraums (eds), Climate Change: The IPCC Scientific Assessment, Cambridge University Press, Cambridge, pp.131–172.

    Google Scholar 

  • Mooney, H.A., B.G. Drake, R.J. Luxmoore, W.C. Oechel and L.F. Pitelka: 1991, Predicting ecosystems responses to elevated CO2 concentrations. Bioscience, 41(2): 96–104.

    Article  Google Scholar 

  • Morison, J.I.L.: 1985, Sensitivity of stomata and water use efficiency to high CO2. Plant Cell Environm., 8: 467–474.

    Article  Google Scholar 

  • Olson, J., J.A. Watts and L.J. Allison: 1985, Major World Ecosystem Complexes Ranked by Carbon in Live Vegetation: A Database. Carbon Dioxide Information Center, Oak Ridge, Tennessee, USA.

    Google Scholar 

  • Parton, W.J., D.S. Schimel, C.V. Cole and D.S. Ojima: 1987, Analysis of factors controlling soil organic matter levels in Great Plains grasslands. Soil Sci. Soc. Am. J., 51: 1173–1179.

    Article  Google Scholar 

  • Polglase, P.J. and Y.P. Wang: 1992, Potential CO2-enhanced carbon storage by the terrestrial biosphere. Aust. J. Bot., 40: 641–656.

    Article  Google Scholar 

  • Post, W.M., E.W. R. P.J. Zinke and A.G. Stangenberger: 1982, Soil carbon pools and world life zones. Nature, 298: 156–159.

    Article  Google Scholar 

  • Prentice, I.C., W. Cramer, S.P. Harrison, R. Leemans, R.A. Monserud and A.M. Solomon: 1992, Aglobal biome model based on plant physiology and dominance, soil properties and climate. J. Biogeogr., 19: 117–134.

    Article  Google Scholar 

  • Prentice, I.C. and A.M. Solomon: 1991, Vegetation models and global change, In: R.S. Bradley (eds), Global Changes of the Past, UCAR/Office for Interdisciplinary Earth Studies, Boulder, pp.365-383.

    Google Scholar 

  • Raich, J.W., E.B. Rastetter, J.M. Melillo, D.W. Kicklighter, P.A. Steudler, B.J. Peterson, A.L. Grace, B. Moore III and C.J. Vorosmarty: 1991, Potential net primary productivity in South America: application of a global model. Ecol. Appl., 1(4): 399–429.

    Article  Google Scholar 

  • Schlesinger, W.H.: 1977, Carbon balance in terrestrial detritus. Ann.Rev.Ecol.Syst., 8: 51–81.

    Article  Google Scholar 

  • Seiler, W. and P. Crutzen: 1980, Estimates of gross and net fluxes of carbon between the biosphere and the atmosphere from biomass burning. Clim. Change, 2: 207–247.

    Article  Google Scholar 

  • Seino, H. and Z. Uchhijima: 1992, Global distribution of net primary productivity of terrestrial vegetation. J. Agr. Met., 48(1): 39–48.

    Article  Google Scholar 

  • Skole, D. and C. Tucker: 1993, Tropical deforestation and habitat fragmentation in the Amazon: satellite data from 1978 to 1988. Science, 260: 1905–1910.

    Article  Google Scholar 

  • Smith, T.M. and H.H. Shugart: 1993, The transient response of terrestrial carbon storage to a perturbed climate. Nature, 361: 523–526.

    Article  Google Scholar 

  • Smith, T.M., J.F. Weishampel, H.H. Shugart and G.B. Bonan: 1992, The Response of Terrestrial C Storage to Climate Change: Modeling C Dynamics at Varying Temporal and Spatial Scales. In: J. Wisniewski and A.E. Lugo (eds). Natural sinks of CO 2, Palmas Del Mar, Puerto Rico

    Google Scholar 

  • Solomon, A.M. and H.H. Shugart (eds): 1993, Vegetation Dynamics and Global Change, Chapman and Hall, 338 pp.

    Google Scholar 

  • Strain, B.R. and J.D. Cure: 1985, Direct Effects of Increasing Carbon Dioxide on Vegetation. United States Department of Energy, NTIS, Springfield, USA.

    Google Scholar 

  • Swartzman, G.L. and S.P. Kaluzny: 1987, Ecological Simulation Primer, Macmillan Publishing Company, 370 pp.

    Google Scholar 

  • Trexler, M.C.: 1991, Minding the Carbon Store: Weighing U.S. Forestry Strategies to Slow Global Warming, World Resources Institute, 81 pp.

    Google Scholar 

  • Turner, D.P., J.J. Lee, G.J. Koerper and J.R. Barker: 1993, The Forest Sector Carbon Budget of the United States: Carbon Pools and Flux under Alternative Policy Options. EPA/600/3-93/093, US Environmental Protection Agency, USA.

    Google Scholar 

  • UN-ECE/FAO: 1992, The Forest Resources of the Temperate Zones. 1990 Forest Resource Assessment. ECE/TIM/80, United Nations, New York.

    Google Scholar 

  • Vloedbeld, M. and R. Leemans: 1993, Quantifying feedback processes in the response of the terrestrail carbon cycle to global change: The modelling approach of IMAGE-2.0. Wat. Air Soil Pol., 70: 615–628.

    Article  Google Scholar 

  • de Vries, B., R.A. van den Wijngaart, G.J.J Kreileman, J.A. Olivier and S. Toet: 1994, Amodel for calculating regional energy use and emissions for evaluating global climate scenarios. Wat. Air Soil Pollut., 76 (this volume).

    Google Scholar 

  • Waring, R.H. and W.H. Schlesinger: 1985, Forest Ecosystems. Concepts and Management, Academic Press, Inc., 340 pp.

    Google Scholar 

  • Whittaker, R.H. and G.E. Likens: 1973, Carbon in the Biota, United States Atomic Energy Commission.

    Google Scholar 

  • Whittaker, R.H. and P.L. Marks: 1975, Methods of assessing terrestrial productivity, In: H. Lieth and R.H. Whittaker (eds), Primary Productivity of the Biosphere, Springer-Verlag, Berlin, pp.55-118.

    Google Scholar 

  • WRI: 1992, World Resources, 1992-1993. World Resources Institute, Oxford University Press, New York.

    Google Scholar 

  • Zobler, L.: 1986, A World Soil File for Global Climate Modeling. Scientific and technical Information Branch, New York.

    Google Scholar 

  • Zuidema, G. and G.J. van den Born: 1994, Simulation of global land cover changes as affected by economic factors and climate. Wat. Air Soil Pollut., 76 (this volume).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Goldewijk, K.K., van Minnen, J.G., Kreileman, G.J.J., Vloedbeld, M., Leemans, R. (1994). Simulating the Carbon Flux Between the Terrestrial Environment and the Atmosphere. In: Alcamo, J. (eds) Image 2.0. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1200-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1200-0_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4525-4

  • Online ISBN: 978-94-011-1200-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics