Advertisement

Image 2.0 pp 133-161 | Cite as

Determining the Potential Distribution of Vegetation, Crops and Agricultural Productivity

Chapter

Abstract

The terrestrial biosphere component of the Integrated Model to Assess the Greenhouse Effect (IMAGE 2.0) uses changes in land cover to compute dynamically the greenhouse gas fluxes between the terrestrial biosphere and the atmosphere. Potential land cover for both natural ecosystems and agrosystems, are determined with the Terrestrial Vegetation Model (TVM). TVM consists of separate submodels for the water-balance, global vegetation patterns, crop distribution and potential rain fed crop yield. All these submodels are based on local climatic, hydrological and soil characteristics and appropriate global data bases for those parameters are collected or compiled. The structure of all models, data bases and linkages between them and other modules of IMAGE 2.0 are described. Although computationally demanding, the models give an adequate description of the global vegetation and agricultural patterns. The only discrepancy occurs in regions where the vegetation and agricultural distribution depends on causes other than climatic, such as additional water storage and supply, anthropogenic influence and natural disturbance. Despite this discrepancy, we conclude that TVM simulates satisfactory global vegetation characteristics and that it can be adequately integrated with other models of IMAGE 2.0.

Keywords

biome climate crop yield global data bases land cover potential vegetation simulation models soil 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alcamo, J., G.J.J Kreileman, M. Krol and G. Zuidema: 1994, Modeling the global society-biosphere-climate system, Part 1: model description and testing, Wat. Air Soil Pollut., 76 (this volume).Google Scholar
  2. Anonymous: 1978, Report on the agro-ecological zones project. Vol 3. Methodology and results for South and Central America, World Soil Resources Report 48/3, Food and Agriculture Organization of the United Nations, Rome, 251 pp.Google Scholar
  3. Anonymous: 1987, Agroclimatological data for Asia, FAO Plant Production and Protection Series 25, Food and Agriculture Organization of the United Nations, Rome.Google Scholar
  4. Anonymous: 1991, Plant-Water Interactions in Large-Scale Hydrological Modelling, IGBP-Report No. 17, International Geosphere-Biosphere Programme, Stockholm, 44 pp.Google Scholar
  5. Anonymous: 1992, Convention on Biological Diversity, Biol. Int., 25: 22–38.Google Scholar
  6. Bazzaz, F.A. and E.D. Fajer: 1992, Plant life in a CO2-rich world, Sci. Am., 1992: 18–21.Google Scholar
  7. Bouwman, A.L. and R. Leemans: 1994, The role of forest soils in the global carbon cycle, Soil Sci. Soc. Am. J., (in press).Google Scholar
  8. Box, E.O.: 1981, Macroclimate and Plant Forms: an Introduction to Predictive Modeling in Phytogeography, Dr. W. Junk Publishers, 258 pp.Google Scholar
  9. Budyko, M.I.: 1986, The Evolution of the Biosphere, D.Reidel Publishing Company, 423 pp.Google Scholar
  10. Chadwyck-Healey: 1992, World climate disc: Global climate change data, CD-ROM Chadwyck-Healey, Ltd., Cambridge.Google Scholar
  11. Emanuel, W.R., H.H. Shugart and M.P. Stevenson: 1985, Climatic change and the broad-scale distribution of terrestrial ecosystems complexes, Clim. Change, 7: 29–43.CrossRefGoogle Scholar
  12. Espenshade, E.B., Jr. and J.L. Morrison (eds): 1991, Goode’s World Atlas, Rand McNally &Company, 368 pp.Google Scholar
  13. FAO/CSRC: 1974, Soil map of the world, 1.5M, UNESCO, Paris. 1/2 degree digitization, University of Hew Hampshire, Durham, N.C.Google Scholar
  14. FAO/UNESCO: 1974, Soil Map of the World, 1:5, 000,000, Food and Agriculture Organisation.Google Scholar
  15. Federal Climate Complex: 1992, International Station Meteorological Climate Summary Version 2.0, CD-ROM Naval Oceanography Command Detachment Asheville, USAFETA OL-A and National Climate Data Center, Asheville.Google Scholar
  16. Federer, C.A.: 1982, Transpirational supply and demand: Plant, soil and atmospheric effects evaluated by simulation, Water Resour. Res., 18: 355–362.CrossRefGoogle Scholar
  17. Gifford, R.M.: 1979, Growth and yield of CO2-enriched wheat under water-limited conditions, Austr. J. Plant. Physiol., 6: 367–3CrossRefGoogle Scholar
  18. Gribbin, J. and H.H. Lamb: 1978, Climatic change in historical times, In: J. Gribben (ed), Climatic Change, Cambridge University Press, pp. 68–82.Google Scholar
  19. Guetter, P.J. and J.E. Kutzbach: 1990, Amodified Köppen classification applied to model simulations of glacial and interglacial climates, Climatic Change, 16: 193–215.CrossRefGoogle Scholar
  20. de Haan, B.J., M. Jonas, O. Klepper, J. Krabec, M.S. Krol and K. Olendrzynski: 1994, An atmosphere-ocean model for evaluation of climate scenarios, Wat. Air Soil Pollut., 76 (this volume).Google Scholar
  21. Henderson-Sellers, A.: 1991, Developing an interactive biosphere for global climate models, Vegetatio, 91: 149–166.CrossRefGoogle Scholar
  22. Holdridge, L.R.: 1947, Determination of world plant formations from simple climatic data, Science, 105: 367–368.CrossRefGoogle Scholar
  23. Hutchinson, M.F.: 1987, Methods of generation of weather sequences, In: A.H. Bunting (ed), Agricultural Environments. Characterization, Classification and Mapping, C.A.B International, pp. 149–157.Google Scholar
  24. Kineman, J.J.: 1992, Global Ecosystems database Version 1.0 (on CDROM) User’s guide, Key to Geophysical Records Documentation No. 26, USDOC/NOAA National Oceanic and Atmospheric Administration, Boulder, Colorado, 121 pp.Google Scholar
  25. Kineman, J.J. and M.A. Ohrenschall: 1992, Global Ecosystems database Version 1.0 (on CDROM) Disc-A, Documentation manual, Key to Geophysical Records Documentation No. 27, USDOC/NOAA National Oceanic and Atmospheric Administration, Boulder, Colorado, 240 pp.Google Scholar
  26. Klein-Goldewijk, K., J.G. van Minnen, G.J.J Kreileman, M. Vloedbeld and R. Leemans: 1994, Simulating the carbon flux between the terrestrial environment and the atmosphere, Wat. Air Soil Pollut., 76 (this volume).Google Scholar
  27. Köppen, W.: 1936, Das geographische System der Klimate, In: W. Köppen and R. Geiger (eds), Handbuch der Klimatologie, Gebrüder Borntraeger, pp. 1–46.Google Scholar
  28. Körner, C: 1993, CO2 fertilization: The great uncertainty in future vegetation development, In: A.M. Solomon and H.H. Shugart (eds), Vegetation Dynamics and Global Change, Chapman and Hall, pp. 53–70.Google Scholar
  29. Küchler, A.W.: 1947, Ageographic system of vegetation, Geogr. Rev., 37: 233–240.CrossRefGoogle Scholar
  30. Küchler, A.W.: 1949, Aphysiognomic classification of vegetation, Ann. Ass. Amer. Geog., 39: 201–210.Google Scholar
  31. Leemans, R.: 1992, Modelling ecological and agricultural impacts of global change on a global scale, J. Sci. Ind. Res., 51: 709–724.Google Scholar
  32. Leemans, R.: 1994, The use of plant functional type classifications to model the global land cover and simulate the interactions between the terrestrial biosphere and the atmosphere, In: T.M. Smith, H.H. Shugart and F.I. Woodward (eds), Plant Functional Types Classifications, Cambridge University Press, (in press).Google Scholar
  33. Leemans, R. and W. Cramer: 1991, The IIASA database for mean monthly values of temperature, precipitation and cloudiness on a global terrestrial grid, Research Report RR-91-18, International Institute of Applied Systems Analyses, Laxenburg, 61 pp.Google Scholar
  34. Leemans, R. and P. Halpin: 1992, Global change and biodiversity, In: B. Groombridge (ed), Biodiversity 1992: Status of the Earth’s Living Resources, Chapman and Hall, pp. 254–255.Google Scholar
  35. Leemans, R. and A.M. Solomon: 1993, The potential response and redistribution of crops under a doubled CO2 climate, Clim. Res., 3: 79–96.CrossRefGoogle Scholar
  36. Legates, D.R. and C.J. Willmott: 1990a, Mean seasonal and spatial variability in gauge corrected, global precipitation, Int. J. Climatol., 10: 111–127.CrossRefGoogle Scholar
  37. Legates, D.R. and C.J. Willmott: 1990b, Mean seasonal and spatial variability in global surface air temperature, Theor. Appl. Climatol., 41: 11–21.CrossRefGoogle Scholar
  38. Matson, P.A. and S.L. Ustin: 1991, The future of remote sensing in ecological sciences, Ecology, 72: 1917–1945.CrossRefGoogle Scholar
  39. Matthews, E.: 1985, Atlas of archived vegetation, land-use and seasonal albedo data sets, Technical Memorandum 86199, NASA, New York, 23 pp.Google Scholar
  40. Melillo, J.M., A.D. McGuire, D.W. Kicklighter, B. Moore III, C.J. Vorosmarty and A.L. Schloss: 1993, Global climate change and terrestrial net primary production, Nature, 363: 234–239.CrossRefGoogle Scholar
  41. Monserud, R.A. and R. Leemans: 1992, The comparison of global vegetation maps, Ecol. Modelling, 62: 275–293.CrossRefGoogle Scholar
  42. Mücher, CA., T.J. Stomph and L.O. Fresco: 1993, Proposal for a global land use classification, Final Report LUIS FAO, ITC and WAU, Rome, Enschede, and Wageningen, 37 pp.Google Scholar
  43. Müller, M.J.: 1982, Selected Climatic Data for a Global Set of Standard Stations for Vegetation Science, Dr. W. Junk Publishers, 306 pp.Google Scholar
  44. Neilson, R.P., G.A. King and G. Koerper: 1992, Toward a rule-based biome model, Landscape Ecol., 7: 27–43.CrossRefGoogle Scholar
  45. Olson, J., J.A. Watts and LJ. Allison: 1985, Major World Ecosystem Complexes Ranked by Carbon in Live Vegetation: A Database, Report NDP-017, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 164 pp.Google Scholar
  46. Overpeck, J.T., D. Rind and R. Goldberg: 1990, Climate-induced changes in forest disturbance and vegetation, Nature, 343: 51–53.CrossRefGoogle Scholar
  47. Peters, R.L.: 1992, Conservation of biological diversity in the face of climate change, In: R.L. Peters and T.E. Lovejoy (eds), Global Warming and Biological Diversity, Yale University Press, pp. 15–30.Google Scholar
  48. Prentice, I.C., W. Cramer, S.P. Harrison, R. Leemans, R.A. Monserud and A.M. Solomon: 1992, Aglobal biome model based on plant physiology and dominance, soil properties and climate, J. Biogeogr., 19: 117–134.CrossRefGoogle Scholar
  49. Prentice, I.C., M.T. Sykes and W. Cramer: 1993, Asimulation model for the transient effects of climate change on forest landscapes, Ecol. Model, 65: 51–70.CrossRefGoogle Scholar
  50. Prentice, I.C., R.S. Webb, M.T. Ter-Mikhaelian, A.M. Solomon, T.M. Smith, S.E. Pitovranov, N.T. Nikolov, A.A. Minin, R. Leemans, S. Lavorel, M.D. Korzukhin, H.O. Helmisaari, J.P. Hrabovszky, S.P. Harrison, R.W. Emanuel and G.B. Bonan: 1989, Developing a Global Vegetation Dynamics Model: Results of an IIASA Summer Workshop, IIASA research report RR-89-7, International Institute of Applied Systems Analysis, Laxenburg, Austria, 48 pp.Google Scholar
  51. Prentice, K.C. and I.Y. Fung: 1990, The sensitivity of terrestrial carbon storage to climate change, Nature, 346: 48–51.CrossRefGoogle Scholar
  52. Rind, D., C. Rosenzweig and R. Goldberg: 1992, Modelling the hydrological cycle in assessments of climate change, Nature, 358: 119–122.CrossRefGoogle Scholar
  53. Rock, B.N., D.L. Skole and B.J. Choudhury: 1993, Monitoring vegetation change using satellite data, In: A.M. Solomon and H.H. Shugart (eds), Vegetation Dynamics and Global Change, Chapman and Hall, pp. 153–167.Google Scholar
  54. Smith, T.M., R. Leemans and H.H. Shugart: 1992, Sensitivity of terrestrial carbon storage to CO2 induced climate change: Comparison of four scenarios based on general circulation models, Clim. Change, 21: 367–384.CrossRefGoogle Scholar
  55. Townshend, J., J. Cihlar, C. Justice, J.-P. Malingreau, S. Ruttenberg, F. Sadowski, D. Skole and P. Teillet: 1991, A new high resolution global dataset for land applications. IGBP-DIS’s pilot land cover project working group., Universite de Paris, Paris.Google Scholar
  56. Townshend, J.R.G.: 1992, Improved Global data for land Application: A proposal for a New High Resolution Data Set, IGBP-Report No.20, International Geoshere-Biosphere Programme, Stockholm, 87 pp.Google Scholar
  57. Tucker, C.J., J.R. Townshend and T.E. Goff: 1985, African land-cover classification using satellite data, Science, 227: 369–375.CrossRefGoogle Scholar
  58. Turner, B.L., R.H. Moss and D.L. Skole: 1993, Relating Land Use and Global Change: A Proposal for an IGBP-HDP Core Project, IGBP Report No.24 and HDP Report No. 5, International Geosphere-Biosphere Programme and the Human Dimensions of Global Environmental Change Programme, Stockholm, 65 pp.Google Scholar
  59. Vloedbeld, M. and R. Leemans: 1993, Quantifying feedback processes in the response of the terrestrial carbon cycle to global change — the modeling approach of image-2, Water Air Soil Pollut., 70: 615–628.CrossRefGoogle Scholar
  60. von Humboldt, F.H.A.: 1807, Ideen zu einer Geographie der Pflanzen neben einem naturgemalde der Tropenländer.Google Scholar
  61. Walter, H. and E. Box: 1976, Global classification of natural terrestrial ecosystems, Vegetatio, 32: 75–81.CrossRefGoogle Scholar
  62. Willmott, C.J., CM. Rowe and W.D. Philpot: 1985, Small scale climate maps: a sensitivity analysis of some common assumptions associated with grid point interpolation and contouring, Am. Cart., 12: 5–16.CrossRefGoogle Scholar
  63. de Wit, C.T.: 1965, Photosynthsis of leaf canopies, Agricultural Research Report 663, Centre for Agricultural Publicaton and Documentation, Wageningen.Google Scholar
  64. Wood, S.R. and F.J. Dent: 1983, LECS: A Land Evaluation Computer System, Manual AGOF/IN S/78/006 Manual 5 and 6, Ministry of Agriculture, Government of Indonesia, United Nations Development Programme, and Food and Agriculture Organization, Rome, 221 and 157 pp.Google Scholar
  65. Woodward, F.I.: 1987, Climate and Plant Distribution, Cambridge University press, 174 pp.Google Scholar
  66. Zobler, L.: 1986, A World Soil File for Global Climate Modeling, Technical Memorandum NASA, New York, 32 pp.Google Scholar
  67. Zuidema, G., G.J. van den Born, J. Alcamo and G.J.J Kreileman: 1994, Simulating changes in global land cover as affected by economic and climatic factors, Wat. Air Soil Pollut., 76 (this volume).Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1994

Authors and Affiliations

  1. 1.Global Change DepartmentNational Institute of Public Health and Environmental Protection, RIVMBilthoventhe Netherlands

Personalised recommendations