Skip to main content

An Introduction to the Molecular Dynamics Method and to Orientational Dynamics in Liquid Crystals

  • Chapter

Part of the book series: NATO ASI Series ((ASIC,volume 431))

Abstract

A brief introduction to the molecular dynamics method for calculating the time evolution of a system of interacting anisotropic particles is given. Particular attention is devoted to ordered systems. We also introduce a description of the orientational dynamics in terms of Wigner rotation matrix correlation functions, presenting some of their general properties. A few examples of orientational correlation functions for a simple model system are described.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rahman, A. and Stillinger, F. H. (1971) J. chem. Phys., 55, 3336.

    Article  ADS  Google Scholar 

  2. Barker, J. A. and Henderson, D. (1976) Revs. Mod. Phys., 48, 587.

    Article  MathSciNet  ADS  Google Scholar 

  3. Hansen, J. P. and McDonald, I. R. (1976) Theory of simple liquids, Academic Press.

    Google Scholar 

  4. Erpenbeck, J. J. and Wood, W. W. (1977) Statistical Mechanics. Part B: Time-Dependent Processes, Plenum Press, 1.

    Google Scholar 

  5. Kushick, J. and Berne, B. J. (1977) Statistical Mechanics. Part B: Time-Dependent Processes, Plenum Press, 41.

    Google Scholar 

  6. Rahman, A. (1978) Correlation Functions and Quasiparticle Interactions in Condensed Matter, J. W. Halley (ed.), Plenum Press.

    Google Scholar 

  7. Zannoni, C. (1979) The Molecular Physics of Liquid Crystals, G. R. Luckhurst and G. W. Gray (eds.), Academic Press, Chap. 9, 191.

    Google Scholar 

  8. Abraham, F. (1986) Advances in Physics, 35, 1.

    Article  ADS  Google Scholar 

  9. Ciccotti, G. and Ryckaert, J. P. (1986) Computer Phys. Reports, 4, 345.

    ADS  Google Scholar 

  10. Landau, L. and Lifshitz, E. M. (1960) Classical Mechanics, Pergamon.

    Google Scholar 

  11. Kushick, J. and Berne, B. J. (1973) J. chem. Phys., 59, 4486.

    Article  ADS  Google Scholar 

  12. Tsykalo, A. L. and Bagmet, A. D. (1976) Russian J. Phys. Chem., 50, 439.

    Google Scholar 

  13. Tsykalo, A. L. and Bagmet, A. D. (1978) Molec. Crystals Liq. Crystals, 46, 111.

    Article  Google Scholar 

  14. Zannoni, C. and Guerra, M. (1981) Molec. Phys., 44, 849.

    Article  ADS  Google Scholar 

  15. Adams, D. J. (1984) Proc. R. Soc. Lond. A, 394, 137.

    Article  ADS  Google Scholar 

  16. Frenkel, D. (1987) Computer Phys. Comm., 44, 243.

    Article  ADS  Google Scholar 

  17. Stroobants, A., Lekkerkerker, H. N. W. and Frenkel, D. (1987) Phys. Rev. A, 36, 2929.

    Article  ADS  Google Scholar 

  18. Allen, M. P. and Frenkel, D. (1988) Phys. Rev. A, 37, 1813.

    Article  ADS  Google Scholar 

  19. Egberts, E. and Berendsen, H. J. C. (1988) J. chem. Phys., 89, 3718.

    Article  ADS  Google Scholar 

  20. Andersen, H. C. (1980) J. chem. Phys., 72, 2384.

    Article  ADS  Google Scholar 

  21. Lebwohl, P. A. and Lasher, G. (1972) Phys. Rev. A, 6, 426.

    Article  ADS  Google Scholar 

  22. Fabbri, U. and Zannoni, C. (1986) Molec. Phys., 58, 763.

    Article  ADS  Google Scholar 

  23. Zannoni, C. (1986) J. chem. Phys., 84, 424.

    Article  ADS  Google Scholar 

  24. Brooks, C. L., Brunger, A. and Karplus, M. (1985) Biopolymers, 24, 843.

    Article  Google Scholar 

  25. Rose, M. E. (1957) Elementary Theory of Angular Momentum, Wiley.

    Google Scholar 

  26. Stone, A. J. (1979) The Molecular Physics of Liquid Crystals, G. R. Luckhurst and G. W. Gray (eds.), Academic Press, Chap. 2, 31.

    Google Scholar 

  27. Pasini, P. and Zannoni, C. (1984) Molec. Phys., 52, 749.

    Article  ADS  Google Scholar 

  28. Evans, D. J. (1977) Molec. Phys., 34, 317.

    Article  ADS  Google Scholar 

  29. Verlet, L. (1967) Phys. Rev., 159, 98.

    Article  ADS  Google Scholar 

  30. Ryckaert, J. P., Ciccotti, J. P. and Berendsen, H. J. C. (1977) J. Comput. Phys., 23, 327.

    Article  ADS  Google Scholar 

  31. Toxvaerd, S. (1982) J. Comput. Phys., 47, 444.

    Article  ADS  MATH  Google Scholar 

  32. Andersen, H. C. (1983) J. Comput. Phys., 52, 24.

    Article  ADS  MATH  Google Scholar 

  33. Abramowitz, M. and Stegun, I. A. (eds.) (1964) Handbook of Mathematical Functions, Dover.

    Google Scholar 

  34. Romanelli, M. J. (1962) Mathematical Methods for Digital Computers, A. Ralston and H. S. Wilf (eds.), Wiley.

    Google Scholar 

  35. Barojas, J., Levesque, D. and Quentrec, B. (1973) Phys. Rev. A, 7, 1092.

    Article  ADS  Google Scholar 

  36. McCammon, J. A. and Harvey, S. C. (1987) Dynamics of Proteins and Nucleic Acids, Cambridge U.P., London.

    Book  Google Scholar 

  37. Toxvaerd, S. (1983) J. Comput. Phys., 52, 2214.

    Article  Google Scholar 

  38. Lebowitz, J. L., Percus, J. K. and Verlet, L. (1967) Phys. Rev., 153, 250.

    Article  ADS  Google Scholar 

  39. Zannoni, C. (1979) The Molecular Physics of Liquid Crystals, G. R. Luckhurst and G. W. Gray (eds.), Academic Press, Chap. 3, 51.

    Google Scholar 

  40. Zannoni, C. (1979) Molec. Phys., 38, 1813.

    Article  ADS  Google Scholar 

  41. Vieillard-Baron, J. (1974) Molec. Phys., 28, 809.

    Article  ADS  Google Scholar 

  42. Chiccoli, C., Pasini, P., Zannoni, C. and Biscarini, F. (1988) Molec. Phys., 65, 1505.

    Article  ADS  Google Scholar 

  43. Gordon, R. G. (1968) Advances in Magnetic Resonance, J. S. Waugh (ed.), Academic Press, 3, 1.

    Google Scholar 

  44. Steele, W. A. (1968) Transport Phenomena in Fluids, H. J. M. Hanley (ed.), Dekker, 209.

    Google Scholar 

  45. Berne, B. J. (1971) Physical Chemistry, an Advanced Treatise, H. Eyring, D. Henderson and W. Jost (eds.), Academic Press, 8B, 539.

    Google Scholar 

  46. Berne, B. J. and Pecora, R. (1976) Dynamic Light Scattering, Wiley.

    Google Scholar 

  47. Berne, B. J. (1977) Statistical Mechanics. Part B: Time-Dependent Processes, Plenum Press, 233.

    Google Scholar 

  48. Böttcher, C. J. F. and Bordewijk, P. (1978) Theory of Electric Polarisation, vol. II, Elsevier.

    Google Scholar 

  49. Hansen, J. P. (1978) in Microscopic Structure and Dynamics of Liquids, J. Dupuy and A. J. Dianoux (eds.), Plenum Press, 3.

    Google Scholar 

  50. Williams, G. (1978) Chem. Soc. Rev., 7, 89.

    Article  Google Scholar 

  51. Gordon, R. G. (1966) J. chem. Phys., 43, 1307.

    Article  ADS  Google Scholar 

  52. Dozov, I., Kirov, N. and Fontana, M. P. (1984) J. chem. Phys., 81, 2585.

    Article  ADS  Google Scholar 

  53. Nordio, P. L., Rigatti, G. and Segre, U. (1973) Molec. Phys., 25, 129.

    Article  ADS  Google Scholar 

  54. Kirov, N., Dozov, I., Fontana, M. P. and Rosi, B. (1987) J. Physique, 48, 457.

    Article  Google Scholar 

  55. Vold, R. R. (1985) Nuclear Magnetic Resonance of Liquid Crystals, J. W. Emsley (ed.), Reidel, Chap. 11, 253.

    Google Scholar 

  56. Freed, J. H. (1987) Rotational Dynamics of Small and Macromolecules, Th. Dorfmüller and R Pecora (eds.), Lecture Notes in Physics 293, Springer-Verlag, 89.

    Google Scholar 

  57. Nordio, P. L. and Segre, U. (1979) The Molecular Physics of Liquid Crystals, G. R. Luckhurst and G. W. Gray (eds.), Academic Press, Chap. 18, 411.

    Google Scholar 

  58. Blum, L. and Torruella, A. J. (1972) J. chem. Phys., 56, 303.

    Article  ADS  Google Scholar 

  59. Lax, M. (1974) Symmetry Principles in Solid State and Molecular Physics, Wiley.

    Google Scholar 

  60. Versmold, H. (1977) Molec. Phys., 33, 1051.

    Article  ADS  Google Scholar 

  61. Briels, W. J. (1980) J. chem. Phys., 73, 1850.

    Article  ADS  Google Scholar 

  62. Lynden-Bell, R. M. (1980) Chem. Phys. Lett., 70, 477.

    Article  ADS  Google Scholar 

  63. Steele, W. A. (1980) Molec. Phys., 39, 1411.

    Article  MathSciNet  ADS  Google Scholar 

  64. Pick, R. M. and Yvinec, M. (1983) Symmetries and Properties of Non-Rigid Molecules, J. Maruani and J. Serre (eds.), Elsevier, 439.

    Google Scholar 

  65. Steele, W. A. (1983) Symmetries and Properties of Non-Rigid Molecules, J. Maruani and J. Serre (eds.), Elsevier, 427.

    Google Scholar 

  66. Fisz, J. J. (1987) Chem. Phys., 114, 165.

    Article  ADS  Google Scholar 

  67. Dozov, I., Kirov, N. and Petroff, B. (1987) Phys. Rev. A, 36, 2870.

    Article  ADS  Google Scholar 

  68. Pasini, P. and Zannoni, C. (1984) INFN Bull, TC-83/19, 1.

    Google Scholar 

  69. Arcioni, A., Tarroni, R. and Zannoni, C. (1988) Polarised Spectroscopy of Ordered Systems, B. Samori’ and E. Thulstrup (eds.), Kluwer, 421.

    Google Scholar 

  70. Luckhurst, G. R. and Sanson, A. (1972) Molec. Phys., 24, 1297.

    Article  ADS  Google Scholar 

  71. St. Pierre, A. G. and Steele, W. A. (1981) Molec. Phys., 43, 123.

    Article  ADS  Google Scholar 

  72. Pasini, P., Semeria, F. and Zannoni, C. (1991) J. Symbol. Comput., 12, 221.

    Article  MATH  Google Scholar 

  73. Zwanzig, R. and Ailawadi, N. (1969) Phys. Rev., 182, 280.

    Article  MathSciNet  ADS  Google Scholar 

  74. Nordio, P. L. and Segre, U. (1977) J. Mag. Res., 27, 465.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Zannoni, C. (1994). An Introduction to the Molecular Dynamics Method and to Orientational Dynamics in Liquid Crystals. In: Luckhurst, G.R., Veracini, C.A. (eds) The Molecular Dynamics of Liquid Crystals. NATO ASI Series, vol 431. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1168-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1168-3_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4509-4

  • Online ISBN: 978-94-011-1168-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics