Skip to main content

Nuclear Spin Relaxation Mechanisms in Liquid Crystals Studied by Field Cycling NMR

  • Chapter
The Molecular Dynamics of Liquid Crystals

Part of the book series: NATO ASI Series ((ASIC,volume 431))

Abstract

As first discussed by Pincus and by Blinc et al., fluctuations of the director in a nematic liquid crystal should lead to a characteristic square root dependence of the nuclear magnetic relaxation time T, of a liquid crystal on the Larmor frequency of the considered nuclear spin. The significance of this process in nematics and of related mechanisms in smectics is violently disputed in the literature, essentially because standard NMR spectrometers do not allow a sufficiently broad frequency variation. In this Chapter we first illustrate the present capabilities of field cycling methods to perform frequency dependent T, measurements over a range from about 100 Hz to 10 MHz, and then review the results of proton and deuteron spin relaxation dispersion measurements for numerous nematic and smectic liquid crystals. As a rule it is found that director fluctuations are clearly observable by the relaxation rate only at low Larmor frequencies, i.e., far below the standard megahertz regime.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zax, D. B., Bielecki, A., Zilm, K W., Pines, A. and Weitekamp, D. P. (1985) J. chem. Phys., 83, 4877.

    Article  ADS  Google Scholar 

  2. Kreis, R., Thomas, A., Studer, W. and Ernst, R. R. (1988) J. chem. Phys., 89, 6623.

    Article  ADS  Google Scholar 

  3. Abragam, A. (1961) The Principles of Nuclear Magnetism, Clarendon Press, Oxford.

    Google Scholar 

  4. Slichter, C. P. (1980) Principles of Magnetic Resonance, Springer Verlag, Berlin.

    Google Scholar 

  5. Redfield, A. G., Fite, W. and Bleich, H. E. (1968) Rev. Sci. Instrum., 39, 710.

    Article  ADS  Google Scholar 

  6. Kimmich, R. B. (1980) Bull. Magn. Reson., 1, 195.

    Google Scholar 

  7. Noack, F. (1986) Progr. NMR Spectrosc., 18, 171.

    Article  Google Scholar 

  8. Wölfel, W., Noack, F. and Stohrer, M. (1975) Z. Naturforsch., 30a, 437.

    ADS  Google Scholar 

  9. Graf, V., Reinhart, K. F., Noack, F. and Stohrer, M. (1976) Proc. XIX“ Congress Ampere, Heidelberg, 195.

    Google Scholar 

  10. Graf, V., Noack, F. and Stohrer, M. (1977) Z. Naturforsch., 32a, 61.

    ADS  Google Scholar 

  11. Blinc, R., Luzar, M., Mali, M., Osredkar, R., Seliger, J. and Vilfan, M. (1976) J. Phys. Colloque (Paris), 37, C3–73.

    Google Scholar 

  12. de Gennes, P. G. (1974) The Physics of Liquid Crystals, Clarendon Press, Oxford.

    Google Scholar 

  13. Rommel, E., Mischker, K., Osswald, G., Schweikert, K. H. and Noack, F. (1986) J. Magn. Reson., 70, 219.

    Google Scholar 

  14. Schweikert, K. H., Krieg, R. and Noack, F. (1988) J. Magn. Reson., 78, 77.

    Google Scholar 

  15. ] Schweikert, K. H. (1990) ‘Thesis’, Universität Stuttgart.

    Google Scholar 

  16. Montgomery, D. B. (1980) Solenoid Magnet Design, Krieger Press, Huntington. [17] Pincus, P. (1969) Solid State Commun., 7, 415.

    Google Scholar 

  17. Blinc, R., Hogenboom, D. L., O’Reilly, D. E. and Peterson, E. M. (1969) Phys. Rev. Lett., 23, 969.

    Article  ADS  Google Scholar 

  18. Cabane, B. (1972) Advan. Moles. Relaxation Processes, 3, 341.

    Article  Google Scholar 

  19. Ukleja, P., Pirs, J. and Doane, J. W. (1976) Phys. Rev., A 14, 414.

    Article  ADS  Google Scholar 

  20. Zupančdič, I., Žagar, V., Rožmarin, M., Levstick, I., Kogovšek, F. and Blinc, R. (1976) Solid State Commun., 18, 1591.

    Google Scholar 

  21. Freed, J. H. (1977) J. chem. Phys., 66, 4183.

    Article  ADS  Google Scholar 

  22. Faber, T. E. (1977) Proc R. Soc. (London), A 353, 277.

    Google Scholar 

  23. Vold, R. R. and Vold, R. L. (1988) J. chem. Phys., 88, 4655.

    Article  ADS  Google Scholar 

  24. Wölfel, W. and Noack, F. (1978) Proc. XXthCongress Ampere, Tallinn, 455.

    Google Scholar 

  25. Wölfel, W. (1978) Kernresonanzuntersuchungen der Molekülbewegung im Flüssigkristall PAA, Minerva Publikation, München.

    Google Scholar 

  26. Limmer, St., Schmiedel, H., Hillner, B., Lösche, A. and Grande, S. (1980) J. Phys. (Paris), 41, 869.

    Article  Google Scholar 

  27. McConnel, J. (1987) The Theory of Nuclear Magnetic Relaxation in Liquids, Cambridge University Press, Cambridge.

    Google Scholar 

  28. Dong, R. Y., Tomchuk, E. and Bock, E. (1975) Can. J. Phys., 53, 610.

    Article  ADS  Google Scholar 

  29. Reinhart, K. F., Seeliger, R., Graf, V. and Noack, F. (1979) J. Phys. Colloque (Paris), 40, C3–199.

    Google Scholar 

  30. Ghosh, S. K., Tettamanti, E. and Panatta, A. (1980) Phys. Rev., B 21, 1194.

    Article  ADS  Google Scholar 

  31. Woessner, D. E. (1962) J. chem. Phys., 37, 647.

    Article  ADS  Google Scholar 

  32. Žumer, S. and Vilfan, M. (1978) Phys. Rev., A 17, 424.

    Article  ADS  Google Scholar 

  33. Vold, R. R. and Vold, R. L. (1988) J. chem. Phys., 88, 1443.

    Article  ADS  Google Scholar 

  34. Dong, R. Y. (1988) J. chem. Phys., 88, 3962.

    Article  ADS  Google Scholar 

  35. ] Noack, F. (1984) Molec. Crystals liq. Crystals, 113, 247.

    Google Scholar 

  36. Janik, J. A., Janik, J. M. and Stanek, T. (1988) Proc. XIIth Int. Liquid Crystal Conference, Freiburg, 486.

    Google Scholar 

  37. Kelker, H. and Hatz, R. (1980) Handbook of Liquid Crystals, Verlag Chemie, Weinheim

    Google Scholar 

  38. Demus, D. and Zaschke, H. (1974/1984) Flüssige Kristalle in Tabellen I + II, VEB Verlag, Leipzig.

    Google Scholar 

  39. Nagel, G., Wölfel, W. and Noack, F. (1983) Israel J. Chem.,23, 380.

    Google Scholar 

  40. Humpfer, R. (1989) Diplomarbeit, Universität Stuttgart.

    Google Scholar 

  41. Mugele, T. H., Graf, V., Wölfel, W. and Noack, F. (1980) Z. Naturforsch., 35a, 824.

    Google Scholar 

  42. Osswald, G. (1984) Diplomarbeit, Universität Stuttgart.

    Google Scholar 

  43. Notter, M. (1986) Diplomarbeit, Universität Stuttgart.

    Google Scholar 

  44. Noack, F., Notter, M. and Weiß, W. (1988) Liq. Crystals, 3, 907.

    Article  Google Scholar 

  45. Mader, W. (1988) Diplomarbeit, Universität Stuttgart.

    Google Scholar 

  46. Schwweikert, K. H. and Noack, F. (1989) Z. Naturforsch., 44a, 597.

    Google Scholar 

  47. Sebastiáo, P. J., Ribeiro, A. C., Nguyen, H. T. and Noack, F. (1993) Z. Naturforsch, 48a, 851.

    Google Scholar 

  48. Zimmermann, U. (1989) Diplomarbeit, Universität Stuttgart.

    Google Scholar 

  49. Wolf, D. (1979) Spin Temperature and Nuclear Spin Relaxation in Matter, Clarendon Press, Oxford.

    Google Scholar 

  50. Blinc, R., Luzar, M., Vilfan, M. and Burgar, M. (1975) J. chem. Phys., 63, 3445.

    Article  ADS  Google Scholar 

  51. Marqusee, J. A., Warner, M. and Dill, K. A. (1984) J. chem. Phys., 81, 6404.

    Article  ADS  Google Scholar 

  52. Vilfan, M., Kogoj, M. and Blinc, R (1987) J. chem. Phys., 86, 1055.

    Article  ADS  Google Scholar 

  53. Blinc, R., Vilfan, M., Luzar, M., Seliger, J. and Zagar, V. (1978) J. chem. Phys., 68, 303.

    Article  ADS  Google Scholar 

  54. Krüger, G. J., Spiesecke, H., van Steenwinkel, R. and Noack, F. (1977) Molec. Crystals liq. Crystals, 40, 103.

    Article  Google Scholar 

  55. Kühner, W., Rommel, E., Noack, F. and Meier, P. (1987) Z. Naturforsch., 42a, 127.

    Google Scholar 

  56. Rommel, E., Noack, F., Meier, P. and Kothe, G. (1988) J. phys. Chem., 92, 2981.

    Article  Google Scholar 

  57. Pusiol, D. and Noack, F. (1989) Liq. Crystals, 5, 377.

    Article  Google Scholar 

  58. Bender, H., Noack, F., Vilfan, M. and Blinc, R. (1989) Liq. Crystals, 5, 1233.

    Article  Google Scholar 

  59. Das, T. P. and Hahn, E. L. (1958) Nuclear Quadrupole Resonance Spectroscopy, Academic Press, New York.

    Google Scholar 

  60. Seliger, J., Osredkar, R., Mali, M. and Blinc, R. (1976) J. chem. Phys., 65, 2887.

    Article  ADS  Google Scholar 

  61. Blinc, R., Vilfan, M. and Seliger, J. (1983) Bull. Magn. Reson., 5, 51.

    Google Scholar 

  62. Winter, F. and Kinnich, R (1982) Molec. Phys., 45, 33.

    Article  ADS  Google Scholar 

  63. Kimmich, R., Winter, F., Nusser, W. and Spohn, K.’H. (1986) J. Magn. Reson., 68, 263.

    Google Scholar 

  64. Pusiol, D., Humpfer, R. and Noack, F. (1990) Proc. XXVthCongress Ampere, Stuttgart, 626; a report was given at the Xth Int. Symposium on Nuclear Quadrupole Resonance Spectroscopy in Takayama, Japan (1989).

    Google Scholar 

  65. Wade, Ch. G. (1977) Ann. Rev. Phys. Chem., 28, 47.

    Article  ADS  Google Scholar 

  66. Dong, R. Y. (1981) Bull. Magn. Reson., 3 93.

    Google Scholar 

  67. Vold, R. L. (1985) Nuclear Magnetic Resonance of Liquid Crystals, J. W. Emsley, (ed.), Reidel, Dordrecht.

    Google Scholar 

  68. Barbara, Th. M., Vold, R. R. and Vold, R. L. (1983) J. chem. Phys., 79, 6338.

    Article  ADS  Google Scholar 

  69. Goldfarb, D., Dong, R. Y., Luz, Z. and Zimmermann, H. (1985) Molec. Phys., 54, 1185.

    Article  ADS  Google Scholar 

  70. Visintainer, J. J., Dong, R. Y., Bock, E., Tomchuk, E., Dewey, D. B., Kuo, A. L. and Wade, Ch. G. (1977) J. chem. Phys.,66, 3343.

    Article  ADS  Google Scholar 

  71. Counsell, C. R. J., Emsley, J. W., Luckhurst, G. R., Turner, D. L. and Charvolin, J. (1984) Molec. Phys., 52, 499.

    Article  ADS  Google Scholar 

  72. Brown, M. F., Ellena, J. F., Trindle, C. and Williams, D. (1986) J. chem. Phys., 84, 465.

    Article  ADS  Google Scholar 

  73. Dong, R. Y., Lewis, J., Tomchuk, E. and Bock, E. (1978) J. chem. Phys., 69, 5314.

    Article  ADS  Google Scholar 

  74. Rutar, V., Vilfan, M., Blinc, R and Bock, E. (1978) Molec. Phys., 35, 721.

    Article  ADS  Google Scholar 

  75. Dong, R. Y. and Richards, G. M. (1989) J. chem. Phys., 91, 7276.

    Article  ADS  Google Scholar 

  76. Schweikert, K. H., Gotzig, H. and Noack, F. (1990) Proc. XXVth Congress Ampere, Stuttgart, 370.

    Google Scholar 

  77. Noack, F. (1993) Proc. Ampere Summer Institute on Advanced Techniques in Experimental Magnetic Resonance, Portoroz, 18.

    Google Scholar 

  78. Kollner, R., Schweikert, K.H., Noack, F. and Zimmermann, H. (1993) Liq. Crystals, 13, 483.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Noack, F., Schweikert, K.H. (1994). Nuclear Spin Relaxation Mechanisms in Liquid Crystals Studied by Field Cycling NMR. In: Luckhurst, G.R., Veracini, C.A. (eds) The Molecular Dynamics of Liquid Crystals. NATO ASI Series, vol 431. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1168-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1168-3_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4509-4

  • Online ISBN: 978-94-011-1168-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics