Skip to main content

Biomechanics and foraging profitability: an approach to assessing trophic needs and impacts of diving ducks

  • Conference paper
Aquatic Birds in the Trophic Web of Lakes

Part of the book series: Developments in Hydrobiology ((DIHY,volume 96))

  • 229 Accesses

Abstract

A biomechanical model of underwater locomotion is described, and data required by the model presented for 3 species of diving duck (Aythya spp.). Based on field observations of behavior and foods consumed, the model is used to estimate energy costs of foraging and minimum food intake rates of canvasbacks (Aythya valisineria) in two habitats in North Carolina. Increased water depth from 0.5 m in Lake Mattamuskeet to 1.5 m in Pamlico Sound increased the net cost of time spent foraging at the bottom by 43%. Biomechanical calculations are combined with data on intake rates at different food densities (Takekawa, 1987) to determine minimum food densities for profitable foraging in Lake Mattamuskeet. Field observations of behavior are used to adjust minimum intake per dive for unsuccessful dives spent locating food patches. Density and dispersion of plant tuber foods in Lake Mattamuskeet, before and after the fall staging period, suggest that the fraction of habitat with tuber densities above a profitability threshold is more critical to canvasbacks than average tuber density. Such factors are important in relating bird energy requirements and benthic sampling data to carrying capacity and total area of usable habitat. The proportion of foods that can be fed upon profitably also determines the fraction of food organisms subject to depletion as components of trophic pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexander, W. C., 1980. The behavioral ecology and sociobiology of nonbreeding diving ducks (Aythyini). Ph.D. Thesis,Clemson University, Clemson, SC. 207 pp.

    Google Scholar 

  • Anderson, M. G. & J. B. Low, 1976. Use of sago pondweed by waterfowl on the Delta Marsh, Manitoba. J. Wildl. Manage. 40: 233–242.

    Article  Google Scholar 

  • Ball, J. P., 1990. Active diet selection or passive reflection of changing food availability: the underwater foraging behaviour of canvasback ducks. In R. N. Hughes (ed.), Behavioural mechanisms of food selection. NATO ASI Series, Vol. g 20, Springer-Verlag, Berlin: 97–109.

    Google Scholar 

  • Baudinette, R. V., P. Gill & M. O’Driscoll, 1986. Energetics of the little penguin, Eudyptula minor: temperature regulation,the calorigenic effect of food, and moulting. Aust. J. Zool. 34: 35–45.

    Article  Google Scholar 

  • Bedard, J., J. C. Therriault & J. Berube, 1980. Assessment of the importance of nutrient recycling by seabirds in the St. Lawrence estuary. Can. J. Fish. aquat. Sci. 37: 583–588.

    Article  CAS  Google Scholar 

  • Bevan, R. M. & P. J. Butler, 1992. The effects of temperature on the oxygen consumption, heart rate and deep body temperature during diving in the tufted duck Aythya fuligula. J. exp. Biol. 163: 139–151.

    Google Scholar 

  • Chaplin, S. B., D. A. Diesel & J. A. Kasparie, 1984. Body temperature regulation in red-tailed hawks and great horned owls: responses to air temperature and food deprivation. Condor 86: 175–181.

    Article  Google Scholar 

  • Costa, D. P. & G. L. Kooyman, 1984. Contribution of specific dynamic action to heat balance and thermoregulation in the sea otter Enhydra lutris. Physiol. Zool. 57: 199–203.

    Google Scholar 

  • Draulans, D., 1982. Foraging and size selection of mussels by the tufted duck, Aythya fuligula. J. anim. Ecol. 51: 943–956.

    Article  Google Scholar 

  • Eadie, J. M. & A. Keast, 1982. Do goldeneyes and perch compete for food? Oecologia 55: 225–230.

    Article  Google Scholar 

  • Goss-Custard, J. D., 1977. The ecology of the Wash. III. Density-related behaviour and the possible effects of a loss of feeding grounds on wading birds (Charadrii). J. appl. Ecol. 14: 721–739.

    Article  Google Scholar 

  • Hill, A. V., 1950. The dimensions of animals and their muscular dynamics. Sci. Prog. 38: 209–230.

    Google Scholar 

  • Howard, R. K. & K. W. Lowe, 1984. Predation by birds as a factor influencing the demography of an intertidal shrimp. J. exp. mar. Biol. Ecol. 74: 35–52.

    Article  Google Scholar 

  • Jenssen, B. M., M. Ekker & C. Bech, 1989. Thermoregulation in winter-acclimatized common eiders (Somateria mollissima) in air and water. Can. J. Zool. 67: 669–673.

    Article  Google Scholar 

  • Kemp, W. M., R. R. Twilley, J. C. Stevenson, W. R. Boynton & J. C. Means, 1983. The decline of submerged vascular plants in upper Chesapeake Bay: summary of results concerning possible causes. Mar. tech. Soc. J. 17: 78–89.

    Google Scholar 

  • Korschgen, C. E., L. S. George & W. L. Green, 1988. Feeding ecology of canvasbacks staging on Pool 7 of the upper Mississippi River. In M. W. Weller (ed.) Waterfowl in winter.University of Minnesota Press, Minneapolis: 237–249.

    Google Scholar 

  • Lovvorn, J. R., 1987. Behavior, energetics, and habitat relations of canvasback ducks during winter and early spring migration. Ph.D. Thesis, University of Wisconsin, Madison,173 pp.

    Google Scholar 

  • Lovvorn, J. R., 1989a. Food defendability and antipredator tactics: implications for dominance and pairing in canvasbacks.Condor 91: 826–836.

    Article  Google Scholar 

  • Lovvorn, J. R., 1989b. Distributional responses of canvasback ducks to weather and habitat change. J. appl. Ecol. 26: 113–130.

    Article  Google Scholar 

  • Lovvorn, J. R., 1991. Mechanics of underwater swimming in foot-propelled diving birds. Proc. int. ornithol. Congr. 20: 1868–1874.

    Google Scholar 

  • Lovvorn, J. R., 1993. Nutrient reserves, probability of cold spells, and the question of reserve regulation in wintering canvasbacks. J. anim. Ecol. 62: in press.

    Google Scholar 

  • Lovvorn, J. R. & D. R. Jones, 1991a. Effects of body size, body fat, and change in pressure with depth on buoyancy and costs of diving in ducks (Aythya spp.). Can. J. Zool. 69: 2879–2887.

    Article  Google Scholar 

  • Lovvorn, J. R. & D. R. Jones, 1991b. Body mass, volume, and buoyancy of some aquatic birds, and their relation to locomotor strategies. Can. J. Zool. 69: 2888–2892.

    Article  Google Scholar 

  • Lovvorn, J. R. & D. R. Jones, 1993. Biochemicals conflicts between adaptations for diving and aerial flight in estuarine birds. Estuaries 16: in press.

    Google Scholar 

  • Lovvorn, J. R., D. R. Jones & R. W. Blake, 1991. Mechanics of underwater locomotion in diving ducks: drag, buoyancy and acceleration in a size gradient of species. J. exp. Biol. 159: 89–108.

    Google Scholar 

  • MacArthur, R. A., 1979. Seasonal patterns of body temperature and activity in free-ranging muskrats (Ondatra zibethicus).Can. J. Zool. 57: 25–33.

    Article  Google Scholar 

  • Morton, J. M., A. C. Fowler & R. L. Kirkpatrick, 1989. Time and energy budgets of American black ducks in winter. J. Wildl. Manage. 53: 401–410.

    Article  Google Scholar 

  • National Research Council, 1985. Oil in the sea: inputs, fates, and effects. National Academy Press, Washington, D.C.

    Google Scholar 

  • Nienhuis, P. H. & A. M. Groenendijk, 1986. Consumption of eelgrass (Zostera marina) by birds and invertebrates: an annual budget. Mar. Ecol. Prog. Ser. 29: 29–35.

    Article  Google Scholar 

  • Paladino, F. V. & J. R. King, 1984. Thermoregulation and oxygen consumption during terrestrial locomotion by white-crowned sparrows Zonotrichia leucophrys gambelii. Physiol. Zool. 57: 226–236.

    Google Scholar 

  • Perry, M. C., W. J. Kuenzel, B. K. Williams & J. A. Serafin, 1986. Influence of nutrients on feed intake and condition of captive canvasbacks in winter. J. Wildl. Manage. 50: 427–434.

    Article  Google Scholar 

  • Schloesser, D. W. & B. A. Manny, 1990. Decline of wildcelery buds in the lower Detroit River, 1950–85. J. Wildl. Manage. 54: 72–76.

    Article  Google Scholar 

  • Schmidt-Nielsen, K., 1972. Locomotion: energy cost of swimming,flying, and running. Science 177: 222–228.

    Article  PubMed  CAS  Google Scholar 

  • Smith, L. M., L. D. Vangilder, R. T. Hoppe, S. J. Morreale & I. L. Brisbin, Jr, 1986. Effect of diving ducks on benthic food resources during winter in South Carolina, USA, Wildfowl 37: 136–141.

    Google Scholar 

  • Takekawa, J. Y., 1987. Energetics of canvasbacks staging on an upper Mississippi River pool during fall migration. Ph.D. Thesis, Iowa State University, Ames, 189 pp.

    Google Scholar 

  • Thrush, S. F., J. E. Hewitt & R. D. Pridmore, 1989. Patterns in the spatial arrangement of polychaetes and bivalves in intertidal sandflats. Mar. Biol. 102: 529–535.

    Article  Google Scholar 

  • Tome, M. W., 1988. Optimal foraging: food patch depletion by ruddy ducks. Oecologia 76: 27–36.

    Google Scholar 

  • Walsberg, G. E., 1983. Avian ecological energetics. In J. R. King & K. C. Parkes (eds) Avian biology, vol. 7. Acad. Press, New York: 161–220.

    Chapter  Google Scholar 

  • Webster, M. D. & W. W. Weathers, 1990. Heat produced as a by-product of foraging activity contributes to thermoregulation by verdins, Auriparus flaviceps. Physiol. Zool. 63: 777–794.

    Google Scholar 

  • Woakes, A. J. & P. J. Butler, 1983. Swimming and diving in tufted ducks, Aythya fuligula, with particular reference to heart rate and gas exchange. J. exp. Biol. 107: 311–329.

    Google Scholar 

  • Wolff, W. J., A. M. M. van Haperen, A. J. J. Sandee, H. J. M. Baptist & H. L. F. Saeijs, 1975. The trophic role of birds in the Grevelingen estuary, The Netherlands, as compared to their role in the saline Lake Grevelingen. Europ. Symp. mar. Biol. 10: 673–689.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Joseph J. Kerekes

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Lovvorn, J.R. (1994). Biomechanics and foraging profitability: an approach to assessing trophic needs and impacts of diving ducks. In: Kerekes, J.J. (eds) Aquatic Birds in the Trophic Web of Lakes. Developments in Hydrobiology, vol 96. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1128-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1128-7_21

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4493-6

  • Online ISBN: 978-94-011-1128-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics