Skip to main content

Hydrogen in Feldspars and Related Silicates

  • Chapter
Feldspars and their Reactions

Part of the book series: NATO ASI Series ((ASIC,volume 421))

  • 776 Accesses

Abstract

The importance of trace quantities of hydrogen in feldspars in determining the rates of intra-crystalline transport processes was suggested by several early experimental studies of Al-Si order-disorder in feldspars and oxygen isotope exchange between feldspars and water. With the aid of modern experimental and analytical techniques, it has been possible to distinguish solid-state from solutioncontrolled processes in hydrothermal experiments, and to confirm the conclusions of earlier studies. The identities of the hydrogen-bearing species which enhances diffusion processes and of the oxygentransporting species have however remained controversial.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Beran A (1986) A model of water allocation in alkali feldspar, derived from infrared spectroscopic investigations. Phys Chem Minerals 13:306–310

    Article  Google Scholar 

  • Beran A (1987) OH groups in nominally anhydrous framework structures: an infrared spectroscopic investigation of danburite and labradorite. Phys Chem Minerals 14:441–445

    Article  Google Scholar 

  • Bernotat-Wulf H, Bertelmann D, Wondratschek H (1988) The annealing behaviour of Eifel sanidine (Volkesfeld) III. The influence of the sample surface and sample size on the orderdisorder transformation rate. N Jb Miner Mh 11:503–515

    Google Scholar 

  • Brady JB, Yund RA (1983) Interdiffusion of K and Na in alkali feldspars: homogenization experiments. Am Mineral 68:95–105

    Google Scholar 

  • Chacko T, Goldsmith JR (1988) The effect of pressure and protons on Si/Al diffusion and oxygen exchange in anhydrous systems. EOS, Trans Am Geophys Union 69:1518

    Google Scholar 

  • Cordier P, Doukhan JC (1989) Water solubility in quartz and its influence on ductility. Eur J Mineral 1:221–237

    Google Scholar 

  • Deer WA, Howie RA, Zussman J (1963) Rock-forming Minerals. Vol. 4, Framework Silicates. Longman: London

    Google Scholar 

  • Dennis PF (1984a) Oxygen self-diffusion in quartz under hydrothermal conditions. J Geophys Res 89:4047–4057

    Article  Google Scholar 

  • Dennis PF (1984b) Oxygen self-diffusion in quartz. Progress in Experimental Petrol. NERC (UK) Publ Series D, 25:260–265

    Google Scholar 

  • Deubener J, Sternitzke M, Muller G (1991) Feldspar MAlSi3O8 (M = H, Li, Ag) synthesized by low-temperature ion exchange. Am Mineral 76: 1620–1627

    Google Scholar 

  • Donnay G, Wyart J, Sabatier G (1959) Structural mechanism of thermal and compositional transformations in silicates. Zeitschrift fur Krist 112:161–168

    Article  Google Scholar 

  • Drits VA, Kashaev AA, Sokolova GV (1975) Crystal structure of cymrite. Kristallografiya 20:280–286

    Google Scholar 

  • Elphick SC, Dennis PF, Graham CM (1986a) Oxygen diffusion studies in minerals: the effect of surface reaction processes in hydrothermal exchange experiments. Materials Science Forum 7:235–242

    Article  Google Scholar 

  • Elphick SC, Dennis PF, Graham CM (1986b) An experimental study of the diffusion of oxygen in quartz and albite using an overgrowth technique. Contrib Mineral Petrol 92:322–330

    Article  Google Scholar 

  • Elphick SC, Graham CM (1988) The effect of hydrogen on oxygen diffusion in quartz: evidence for fast proton transients? Nature 335:243–245

    Article  Google Scholar 

  • Elphick SC, Graham CM, Dennis PF (1988) An ion microprobe study of anhydrous oxygen diffusion in anorthite: a comparison with hydrothermal data and some geological implications. Contrib Mineral Petrol 100:690–695

    Article  Google Scholar 

  • Elphick SC, Graham CM (1992) Measurement of oxygen diffusivity in minerals under high pressure, high aH+ conditions. EOS 73:373

    Article  Google Scholar 

  • Elphick SC, Graham CM, Walker FDL, Holness MB (1991) The application of SIMS ion imaging techniques in the experimental study of fluid-mineral interactions. Mineral Mag 55:347–356

    Article  Google Scholar 

  • Erd RC, White DE, Fahey JJ, Lee DE (1964) Buddingtonite, an ammonium feldspar with zeolitic water. Am Mineral 49:831–857

    Google Scholar 

  • Ernsberger FM (1983) The nonconformist ion. J Amer Ceram Soc 66:747–750

    Article  Google Scholar 

  • Eugster HP (1981) Metamorphic solutions and reactions. In: Wickman FE, Rickard DT (eds) Chemistry and Geochemistry of Solutions at High Temperatures and Pressures. Physics and Chemistry of the Earth 13/14. Pergamon, New York, pp 461–507

    Google Scholar 

  • Eugster HP (1986) Minerals in hot water. Am Mineral 71:655–673

    Google Scholar 

  • Ewald AH (1985) The effect of pressure on oxygen isotope exchange in silicates. Chem Geol 49:179–185

    Article  Google Scholar 

  • Farver JR, Yund RA (1990) The effect of hydrogen, oxygen and water fugacity on oxygen diffusion in alkali feldspar. Geochim Cosmochim Acta 54:2953–2964

    Article  Google Scholar 

  • Farver JR, Yund RA (1991) Oxygen diffusion in quartz: Dependence on temperature and water fiigacity. Chem Geol 90:55–70

    Article  Google Scholar 

  • Foland KA (1974a) Ar40 diffusion in homogeneous orthoclase and an interpretation of Ar diffusion in K-feldspars. Geochim Cosmochim Acta 38:151–166

    Article  Google Scholar 

  • Foland KA (1974b) Alkali diffusion in orthoclase. In: Hoffinan AW, Giletti BJ, Yoder HS, Yund RA (eds), Geochemical Transport and Kinetics. Academic Press, New York, pp 77–98

    Google Scholar 

  • Frantz JD, Marshall WL (1984) Electrical conductances and ionization constants of salts, acids and bases in supercritical aqueous fluids. I. Hydrochloric acid from 100°C to 700°C and at pressures to 4000 bars. Am J Sci 284:651–667

    Article  Google Scholar 

  • Freer R, Dennis PF (1982) Oxygen diffusion studies I. A preliminary ion microprobe investigation of oxygen diffusion in some rock-forming minerals. Miner Mag 45: 179–192

    Article  Google Scholar 

  • Gandais M, Williame C (1984) Mechanical properties of feldspars. In: Brown WL (ed) Feldspars and Feldspathoids, NATO ASI Series C 137, D Reidel Publ Co, Dordrecht, pp207–246

    Google Scholar 

  • Giletti B J (1985) The nature of oxygen transport within minerals in the presence of hydrothermal water and the role of diffusion. Chem Geol 53:197–206

    Article  Google Scholar 

  • Giletti BJ (1986) Diffusion effects on oxygen isotope temperatures of slowly cooled igneous and metamorphic rocks. Earth Planet Sci Letters 77:218–228

    Article  Google Scholar 

  • Giletti BJ, Yund RA (1984) Oxygen diffusion in quartz. J Geophys Res 89:4039–4046

    Article  Google Scholar 

  • Giletti BJ, Semet MP, Yund RA (1978) Studies in diffusion, III oxygen in feldspars: An ion microprobe determination. Geochim Cosmochim Acta 42:45–57

    Article  Google Scholar 

  • Goldsmith JR (1986) The role of hydrogen in promoting Al-Si interdiffusion in albite at high pressures. Earth Planet Sci Letters 80:135–138

    Article  Google Scholar 

  • Goldsmith JR (1987) Al/Si interdiffusion in albite: effect of pressure and the role of hydrogen. Contrib Mineral Petrol 95:311–321

    Article  Google Scholar 

  • Goldsmith JR (1988) Enhanced Al/Si interdiffusion in KAlSi3O8 at high pressures. J Geol 96:109–124

    Article  Google Scholar 

  • Goldsmith JR (1991) Pressure enhanced Al-Si diffusion and oxygen isotope exchange. In: Ganguly, J (ed) Diffusion, Atomic Ordering and Mass Transport. Advances in Physical Geochemistry vol 8, Springer-Verlag, New York, pp 221–247

    Chapter  Google Scholar 

  • Goldsmith JR, Jenkins DM (1985) The high-low albite relations revealed by reversal of degree of order at high pressures. Am Mineral 70:911–923

    Google Scholar 

  • Graham CM, Elphick SC (1990) A re-examination of the role of hydrogen in Al-Si interdiffusion in feldspars. Contrib Mineral Petrol 104:481–491

    Article  Google Scholar 

  • Graham CM, Elphick SC (1991) Some experimental constraints on the role of hydrogen in oxygen and hydrogen diffusion and Al-Si interdiffusion in minerals. In: Ganguly, J (ed) Diffusion, Atomic Ordering and Mass Transport, Advances in Physical Geochemistry vol 8, Springer-Verlag, New York, pp 248–285

    Chapter  Google Scholar 

  • Graham CM, Tareen JAK, McMillan PF, Lowe BM (1992) An experimental and thermodynamic study of cymrite and celsian stability in the system BaO-Al2O3-SiO2-H2O. Eur J Mineral 4:251–269

    Google Scholar 

  • Griggs DT (1967) Hydrolytic weakening of quartz and other silicates. Geophys J Roy Astron Soc 14:19–31

    Google Scholar 

  • Griggs DT, Blacic JD (1965) Quartz: anomalous weakness of synthetic crystals. Science 147:292–295

    Article  Google Scholar 

  • Grove TL, Baker MB, Kinzler RJ (1984) Coupled CaAl-NaSi diffusion in plagioclase feldspar: experiments and applications to cooling rate speedometry. Geochim Cosmochim Acta 48:2113–2121

    Article  Google Scholar 

  • Hobbs B (1984) Point defect chemistry of minerals under a hydrothermal environment. J Geophys Res 89:4026–4038

    Article  Google Scholar 

  • Hofmeister AM, Rossman GR (1983)Color in feldspars. In: Ribbe PH (ed) Feldspar Mineralogy, Mineral Soc Am, Reviews in Mineralogy 2:271–280

    Google Scholar 

  • Hofmeister AM, Rossman GR (1985a) A spectroscopic study of irradiation coloring of amazonite: structurally hydrous, Pb-bearing feldspar. Am Mineral 70:794–804

    Google Scholar 

  • Hofmeister AM, Rossman GR (1985b) A model for the irradiative coloration of smoky feldspar and the inhibiting influence of water. Phys Chem Minerals 12:324–332

    Article  Google Scholar 

  • Hokanson SA, Yund RA (1986) Comparison of alkali interdiffusion rates for cryptoperthites. Am Mineral 71:1409–1414

    Google Scholar 

  • Kats A, Haven Y, Stevels JM (1962) Hydroxyl groups in α-quartz. Phys Chem Glasses 3:69–75

    Google Scholar 

  • Kronenberg AK, Yund RA (1988) Diffusion of hydrogen-related species in feldspar. EOS, Trans Am Geophys Union 69:478

    Google Scholar 

  • Kronenberg AK, Rossman GR, Yund RA, Huffman AR (1989) Stationary and mobile hydrogen defects in potassium feldspar. EOS, Trans Am Geophys Union 70:1406

    Google Scholar 

  • MacKenzie WS (1957) The crystalline modifications of NaAlSi3O8. Am J Sci 255:481–516

    Article  Google Scholar 

  • Martin RF, Donnay G (1972) Hydroxyl in the mantle. Am Mineral 57:554–570

    Google Scholar 

  • Matthews A, Goldsmith JR, Clayton RN (1983) On the mechanisms and kinetics of oxygen isotope exchange in quartz and feldspars at elevated temperatures and pressures. Geol Soc Amer Bull 94:396–412

    Article  Google Scholar 

  • McConnell JDC, McKie D (1960) The kinetics of the ordering process in triclinic NaAlSi3O8. Mineral Mag 32:436–457

    Article  Google Scholar 

  • Merigoux H (1968) Etude de la mobilite de l’oxygene dans les feldspaths alcalins. Bull Soc franc Mineral Cristallogr 91:51–64

    Google Scholar 

  • Midler G (1988) Preparation of hydrogen and lithium feldspar by ion exchange. Nature 332:435–436

    Article  Google Scholar 

  • Muehlenbachs K, Kushiro I (1974) Oxygen isotope exchange and equilibrium of silicates with CO2 or O2. Carnegie Instn Washington Yb 74:232–240

    Google Scholar 

  • Norton D, Taylor HP (1979) Quantitative simulation of the hydrothermal systems of crystallizing magmas on the basis of transport theory and oxygen isotope data: an analysis of the Skaergaard Intrusion. J Petrol 20:421–486

    Google Scholar 

  • O’Neil JR, Taylor HP (1967) The oxygen isotope and cation exchange chemistry of feldspars. Am Mineral 52:1414–1436

    Google Scholar 

  • Purton J, Jones R, Heggie M, Oberg S, Catlow CRA (1992) LDF pseudopotential calculations of the α-quartz structure and hydrogarnet defect. Phys Chem Minerals 18:389–392

    Article  Google Scholar 

  • Purton J, Jones R, Catlow CRA, Leslie M (1993) Ab inition potentials for the calculation of the dynamical and elastic properties of α-quartz. Phys Chem Minerals 19:392–400

    Article  Google Scholar 

  • Rossman GR, Smyth JR (1990) Hydroxyl content of accessory minerals in mantle eclogites and related rocks. Am Mineral 75:775–780

    Google Scholar 

  • Seki Y, Kennedy GC (1964) The breakdown of potassium feldspar, KAISi3O8, at high temperatures and pressures. Am Mineral 49:1688–1706

    Google Scholar 

  • Snow E (1989) The effect of aH+ on Al/Si interdiffusion in plagioclase feldspar at high pressure and temperature: a new look at old data. EOS, Trans Am Geophys Union 70:1405

    Google Scholar 

  • Tullis J (1983) Deformation of feldspars. In: Ribbe PH (ed) Feldspar Mineralogy (2nd edn), Mineral Soc Amer, Reviews in Mineralogy 2:297–323

    Google Scholar 

  • ViswanathanK,HarneitO,EppleM(1992)Hydratedbariumaluminosilicates, BaAl2Si2O8.nH2O, and their relations to cymrite and celsian. Eur J Mineral 4:271–278

    Google Scholar 

  • Voncken JHL, Konings RJM, Jansen JBH, Woensdregt CF (1988) Hydrothermally grown buddingtonite, an anhydrous ammonium feldspar (NH4AlSi3O8). Phys Chem Minerals 15:323–328

    Article  Google Scholar 

  • Walker FDL (1990) Ion microprobe study of intragrain micropermeability in alkali feldspars. Contrib Mineral Petrol 106:124–128

    Article  Google Scholar 

  • WilkinsRWT, Sabine W (1973) Water content of some nominally anhydrous silicates. Am Mineral 58:508–516

    Google Scholar 

  • Worden RH, Walker FDL, Parsons I, Brown WL (1990) Development of microporosity, diffusion channels and deuteric coarsening in perthitic alkali feldspars. Contrib Mineral Petrol 104:507–515

    Article  Google Scholar 

  • Wyart J, Sabatier G, Curien H, Ducheylard G, Severin M (1959) Echanges isotopiques des atomes d’oxygene dans les silicates. Bull Soc franc Miner Cristallogr 82:387–389

    Google Scholar 

  • Wyart J, Curien H, Sabatier G (1961) Echanges isotopiques des atomes d’oxygene dans les silicates et mecanisme d’interaction eau-silicate. Instituto Luca Mallada C.S.I.C (Espana), Cursillos Y Conferencias 8:27–29

    Google Scholar 

  • Yntema LF, Percy AL (1954) Tantalum and columbium. In: Hampel CA (ed) Rare Metals Handbook. Reinhold, New York, pp 389–404

    Google Scholar 

  • Yund RA (1983) Diffusion in feldspars In: Ribbe PH (ed) Feldspar Mineralogy (2nd edn), Mineral Soc Amer, Reviews in Mineralogy 2:203–222

    Google Scholar 

  • Yund RA (1984) Alkali feldspar exsolution: kinetics and dependence on alkali interdiffusion. In: Brown WL (ed) Feldspars and Feldspathoids, NATO ASI Series C 137, D Reidel Publ Co, Dordrecht, pp281–315

    Google Scholar 

  • Yund RA (1986) Interdiffusion of NaSi-CaAl in peristerite. Phys Chem Minerals 13:11–16

    Article  Google Scholar 

  • Yund RA, Anderson TF (1974) Oxygen isotope exchange between potassium feldspar and KC1 solution, hi: Hoffman AW, Giletti BJ, Yoder HS, Yund RA (eds) Geochemical Transport and Kinetics. Academic Press, New York, pp 99–105

    Google Scholar 

  • Yund .RA, Anderson TF (1978) The effect of fluid pressure on oxygen isotope exchange between feldspar and water. Geochim Cosmochim Acta 42:235–239

    Article  Google Scholar 

  • Yund RA, Snow E (1989) Effects of hydrogen fugacity and confining pressure on the interdiffusion rate of NaSi-CaAl in plagioclase. .J Geophys Res 94:10662–10668

    Article  Google Scholar 

  • Zhang Y, Stolper EM, Wasserburg GJ (1991) Diffusion of a multi-species component and its role in oxygen and water transport in silicates. Earth Planet Sci Letters 103:228–240

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Graham, C.M., Elphick, S.C. (1994). Hydrogen in Feldspars and Related Silicates. In: Parsons, I. (eds) Feldspars and their Reactions. NATO ASI Series, vol 421. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1106-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1106-5_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4483-7

  • Online ISBN: 978-94-011-1106-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics