Skip to main content

Fundamentals of Nucleate Pool Boiling of Highly-Wetting Dielectric Liquids

  • Chapter
Cooling of Electronic Systems

Part of the book series: NATO ASI Series ((NSSE,volume 258))

Abstract

Direct cooling with inert, dielectric liquids may well become the technique of choice for the thermal management of future electronic systems. Due to the efficiency of phase-change processes and the simplicity of natural circulation, nucleate pool boiling is of great interest for this application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ayub, Z.H. and Bergles, A.E., 1985, “Pool Boiling from GEWA Surfaces in Water and R113,” ASME Publication HTD Vol-52, Augmentation of Heat Transfer in Energy Systems, ed. Bishop, P.J., New York, pp 57–66

    Google Scholar 

  • Bankoff, S.G., 1958, “Entrapment of Gas in the Spreading of a Liquid over a Rough Surface,” AlChE Journal, Vol 4, pp 24–26

    Article  Google Scholar 

  • Bankoff, S.G., Hajjar, A.J., and McGlothin, B.B., 1958, “On the Nature and Location of Bubble Nuclei in Boiling from Surfaces,” Journal of Applied Physics, Vol 29, No. 12, pp 1739–1741

    Article  Google Scholar 

  • Baker, E., 1973, “Liquid Immersion Cooling of Small Electronic Devices,” Microelectronics and Reliability, Vol 12, pp 163–173

    Article  Google Scholar 

  • Bar-Cohen, A. and McNeil, A., 1992, “Parametric Effects on Pool Boiling Critical Heat Flux in Dielectric Liquids,” Proceedings, Engineering Foundation Conference - Pool and External Flow Boiling, pp 171–175

    Google Scholar 

  • Bar-Cohen, A., and Simon, T. W., 1986, “Wall Superheat Excursions in the Boiling Incipience of Dielectric Fluids,” Heat Transfer Engineering, Vol. 9, No. 3, pp. 19–31, 1988.

    Article  Google Scholar 

  • Bar-Cohen, A., Tong, W. and Simon, T.W., “Theoretical Aspects of Nucleate Pool Boiling with Dielectric Liquids,” Journal of Thermal Science - International Journal of Thermal and Fluid Sciences, Science Press- Beijing, Vol 1, No. 1, pp 46–57

    Google Scholar 

  • Bergles, A. E., Bakhru, N., and Shires, J. W., Jr., 1968, “Cooling of High Power Density Computer Components,” Report No. DSR 70712-60, Engineering Projects Laboratory, Massachusetts Institute of Technology, November 1968.

    Google Scholar 

  • Bergles, A.E. and Chyu, M.C. (1982), “Characteristics of Nucleate Pool Boiling from Porous Metallic Coatings,” Journal of Heat Transfer, Vol 104, pp 279–285

    Article  Google Scholar 

  • Bergles, A.E. and Kim, C.-J., 1988, “A Method to Reduce Temperature Overshoots in Immersion Cooling of Microelectronic Devices,” Proceedings, IEEE l-THERM ’88, IEEE Catalog Number 88ch2590-8, pp 100–105

    Google Scholar 

  • Bergles, A.E. and Rohsenow, W.M., 1964, “The Determination of Forced Convection Surface Boiling Heat Transfer,” Journal of Heat Transfer, Vol 86, pp 365–372

    Article  Google Scholar 

  • Bernath, L., 1960, “A Theory of Local-Boiling Burnout and Its Application to Existing Data,” Chem Eng Prog Symposium Series, Vol 56, No. 30, pp 95–116

    Google Scholar 

  • Carne, M., 1965, “Some Effects of test Section Geometry in Saturated Pool Boiling on the Critical Heat Flux for Some Organic Liquids and Liquid Mixtures,” Chem Eng Prog Symposium Series, Vol 61, No. 59, pp 281–289

    Google Scholar 

  • Carne , M. and Charlesworth, D.H., 1966, Thermal Conduction Effects on the Critical heat Flux in Pool Boiling,” Chem Eng Prog Symposium Series, Vol 62, No. 64, pp 24–34

    Google Scholar 

  • Carvalho, R.D.M. and Bergles, A.E., 1990, “The Effect of Heater Properties and Thickness on the Pool Boiling Critical Heat Flux,” Proceedings, 3rd Encontro Nacional de Ciencias Termicas, Itapema, Brazil

    Google Scholar 

  • Carvalho, R.D.M. and Bergles, A.E., 1990, “The Influence of Subcooling on the Pool Boiling Critical Heat Flux of Simulated Electronic Chips,” Proceedings, 9th International Heat Transfer Conference, Vol 2, pp 289–294

    Google Scholar 

  • Cole, R. and Rohsenow, W.M., 1969, “Correlation of Bubble departure Diameter for Boiling of Saturated Liquids,” Chemical Engineering Progress Symposium Series, Vol. 65, No. 92, pp 211–213

    Google Scholar 

  • Cole, R. and Shulman, H.L., 1966, “Critical Heat Flux Values at Sub-Atmospheric Pressures,” Chemical Engineering Science, Vol 21, pp 723–724

    Article  Google Scholar 

  • Corty, C. and A.S. Foust, 1955, “Surface Variables in Nucleate Boiling,” Chemical Engineering Progress, Symposium Series, Vol 51, No. 17, pp 1–12

    Google Scholar 

  • Danielson, R.D., Tousignant, L., and Bar-Cohen, A., 1987, “Saturated Pool Boiling Characteristics of Commercially Available Perfluorinated Liquids,”Proceedings, ASME/JSME Thermal Engineering Joint Conference, Vol 3, pp 419–430

    Google Scholar 

  • Elkassabgi, Y. and Lienhard, J.H., 1988, “Influences of Subcooling on Burnout of Horizontal Cylinders, ASME Journal of Heat Transfer, Vol 110, pp 479–486

    Article  Google Scholar 

  • Gaertner, R.F., 1965, “Photographic Study of Nucleate Pool Boiling on a Horizontal Surface,” ASME Journal of Heat Transfer, Vol 87, pp 17–29

    Article  Google Scholar 

  • Grigoriev et al 1978...

    Google Scholar 

  • Guglielmini, G. and Nannei, E., 1976, “On the Effect of Heating Wall Thickness on Pool Boiling Burnout,” International Journal of Heat and Mass Transfer, Vol 19, pp 1073–1075

    Article  Google Scholar 

  • Han, C.Y. and Griffith, P., 1965, “The Mechanism of Heat Transfer in Nucleate Boiling - Part I, Bubble Initiation, Growth, and Departure,” Int. Journal of Heat and Mass Transfer, Vol 8, pp 887–904

    Article  MATH  Google Scholar 

  • Hwang, U. P., and Moran, K. P., 1981, “Boiling Heat Transfer of Silicon Integrated Circuits Chip Mounted to a Substrate,” Heat Transfer in Electronic Equipmant, HTD-Vol. 20, ASME, pp. 53–59.

    Google Scholar 

  • Ivey, H.J. and Morris, D.J., 1966, “Critical Heat Flux of Saturation ans Subcooled Pool Boiling in Water at Atmospheric Pressure,” Proceedings, 3rd International Heat Transfer Conference, Vol III, pp 129–142

    Google Scholar 

  • Judd R.L. and Hwang, K.S., 1976, “A Comprehensive Model for Nucleate Pool Boiling Heat Transfer Including Microlayer Evaporation,” ASME Journal of Heat Transfer, Vol 98, pp 623–629

    Article  Google Scholar 

  • Kamehara, N., Yokouchi, K., and Niwa, K., 1987, “Studies on Immersion Cooling for High Density Packaging,” ISHM ’87 Proceedings, pp 175–180

    Google Scholar 

  • Kim, C.-J., and Bergles, A. E., 1988, ””Incipient Boiling Behavior of Porous Boiling Surfaces Used for Cooling of Microelectronic Chips,” in Particulate Phenomena and Multiphase Transport, Vol. 2, T. N. Veziroglu, Ed., Hemisphere, Washington, D.C., pp. 3–18.

    Google Scholar 

  • Kingery, W.D., 1960, Introduction to Ceramics, Wiley, New York, pp 191–216

    Google Scholar 

  • Kutateladze, S.S., 1951, “A Hydrodynamic Theory of Changes in the Boiling Process Under Free Convection Changes,” IZV Akad Nauk SSSR, Otd. Tekhn. Nauk No. 4, p 529 (English Translation AEC-TR-1441)

    Google Scholar 

  • Kutateladze, S.S. and Schniederman, L.L., 1953, “Experimental Study of the Influence of Temperature of Liquid on Change in the Rate of Boiling,” USAEC Report, AEC Transaction 3405, pp 95–100

    Google Scholar 

  • Lee, T.Y. and Simon, T.W., 1989, “High-Heat Flux Forced Convection Boiling from Small Regions,” ASME Publication, HTD-Vol 111, Heat Transfer in Electronics-1989, New York, pp 7–16

    Google Scholar 

  • Jenhard, J.H. and Dhir, V.J., 1973, “Hydrodynamic Prediction of Pool Boiling Heat Fluxes from Finite Bodies,” ASME Journal of Heat Transfer, Vol 95, pp 152–158

    Article  Google Scholar 

  • Lienhard, J.H., Dhir, V.J., Riherd, D.M., 1973, “Peak Pool Boiling Heat Flux Measurements on Finite Horizontal Flat Plates,” ASME Journal of Heat Transfer, Vol 95, pp 477–482

    Article  Google Scholar 

  • Lienhard, J.H. and Keeling, K.B. Jr, 1970, “An Induced Convection Effect Upon the Peak Boiling Heat Flux,” ASME Transactions - Journal of Heat Transfer, Series C, Vol 92, No. 1, pp 1–5

    Article  Google Scholar 

  • Lorenz, J.J., 1972, “The Effects of Surface Conditions on Boiling Characteristics,” PhD Thesis, Mechanical Engineering Department, MIT, Cambridge, Massachusetts

    Google Scholar 

  • Ma, C-F and Bergles, A.E. (1983). Boiling Jet Impingement Cooling of Simulated Microelectronic Chips, Heat Transfer in Electronic Equipment-1983 ASME, New York, pp5–12

    Google Scholar 

  • Ma C-F and Berles, A.E., 1988, Enhancement of Immersion Cooling of Microelectronic Devices by Foreign Gas Jet Impingement,” Proceedings, Inter Symposium on Cooling Electronic and Microelectronic Equipment, Dubrovnik, Yugoslavia

    Google Scholar 

  • Malenkov, I.G., 1968, “Detachment Frequency as a Function of Vapor Bubble Departure,” Inzh. Fiz. Zhur., Vol 20, pp 998

    Google Scholar 

  • Marto, P.J. and Lepere, V.J. (1982), “Pool Boiling Heat Transfer from Enhanced Surfaces to Dielectric Liquids,” Journal of Heat Transfer, Vol 104, pp 292–299

    Article  Google Scholar 

  • Marto, P.J. and Hernandez, B., 1983, “Nucleate Pool Boiling Characteristics of a GEWA-T Surface in Freon 113,” AlChE Symposium Series, Heat Transfer -Seattle,1983. AlChE, New York, pp 1–10

    Google Scholar 

  • Marto, P.J., Wanniarachchi, A.S., and Pulido, R.J., 1985, “Augmenting the Nucleate Pool Boiling Characteristics of GEWA-T Finned Tubes in R-113,” ASME Publication, HTD Vol-52, Bishop, ed., ASME, New York, pp 67–73

    Google Scholar 

  • Moran, K.P., Oktay, S., Buller, L., and Kerjilian, G., 1982, “Cooling Concepts for IBM Electronic Packages,” 1982 IEPS Proceedings, pp 120–140

    Google Scholar 

  • Moisis, R., and Berenson, P.J., 1963, “On the Hydrodynamic Transitions in Nucleate Boiling,” ASME Journal of Heat Transfer, Vol 85, pp 221–229

    Article  Google Scholar 

  • Mudawar, I and Anderson, T.M., 1989, “High Flux Electronic Cooling by Means of Pool Boiling - Part I: Parametric Investigation of the coolant Variation,Pressurization, Subcooling, and Surface Augmentation,” ASME Publication, HTD-Vol-111,pp 25–34

    Google Scholar 

  • Morozov, V.G., 1960, An Experimental Study of Critical Heat Loads at Boiling of Organic Liquids on a Submerged Heating Surface,” International Journal of Heat and Mass transfer, Vol 2, pp 252–258

    Article  Google Scholar 

  • Murphy, R.W. and Bergles, A.E., 1972, “Subcooled Flow Boiling of Fluorocarbons-Hysteresis and Dissolved Gas Effects on Heat Transfer,” Proceedings, Heat Transfer and Fluid Mechanics Institute, Stanford University Press, pp 400–416

    Google Scholar 

  • Nishikawa, K. 1983, “Boiling Heat Transfer and Its Augmentation,” Proceedings ASME/JSME Thermal Engineering Joint Conference, Vol 3, JSME, Tokyo Japan, pp 11–20

    Google Scholar 

  • Normington, P.J.C., Mahalingam, M. and Lee, T.Y.T., 1992, “Thermal ManagementControl Without Overshoot Using Combinations of Boiling Points,” Proceedings, IEEE Third ITHERM Conference, pp

    Google Scholar 

  • Nukiyama, S., 1934, “The Maximum and Minimum Values of the Heat Q Transmitted From Metal to Boiling Water Under Atmospheric Pressure,” Journal of Japan Society of Mechanical Engineering, Vol 37, pp 367–374

    Google Scholar 

  • Park, K.-A, and Bergles, A.E., 1988, “Heat Transfer Characteristics of Simulated Microelectronic Chips,” ASME Journal of Heat Transfer, Vol 109, pp 90–96

    Article  Google Scholar 

  • Pavlov, P.A., Sinitsyn, E.N., and Skripov, V.P., 1990, “Kinetic of Self-Boiling of Heat Transfer Agent in Conditions that are Far From Equilibrium,” Heat Transfer 1990 - Vol 2, Proceedings of the 9th International Heat Transfer Conference, Hemisphere Publishing Company, New York, pp 93–98

    Google Scholar 

  • Reid, R.C., Prausnitz, J.M., and Poling B.E., 1987, The Properties of Gases and Liquids, 4th Edition, McGraw-Hill, New York

    Google Scholar 

  • Rohsenow, W.M., 1962, “A Method for Correlating Heat transfer data for Surface Boiling of Liquids,” Transactions of ASME, Vol 84, p 969

    Google Scholar 

  • Rohsenow, W.M., 1985, “Boiling” in Handbook of Heat Transfer, 2nd Edition, Rohsenow and Hartnett, eds, McGraw Hill, New York

    Google Scholar 

  • Samant, K. R. and Simon, T.W., 1986, “Heat Transfer From a Small High-Heat-Flux Patch to a Subcooled Turbulent Flow,” AIAA/ASME Thermophysics Conference

    Google Scholar 

  • Saylor, J., Simon, T.W. and Bar-Cohen, A., 1989, The Effect of a Dimensionless Length Scale on the Critical Heat Flux in Saturated Pool Boiling,” ASME Publication, Vol HTD-108, pp 71–80

    Google Scholar 

  • Schrage, R.W., 1953, Interphase Mass Transfer Columbia University Press, New York, Chapter II

    Google Scholar 

  • Schwartz, A.M. and Tejada, S.B., 1972, “Studies of Dynamic Contact Angle on Solids,” Journal of Colloidal Interface Science, Vol 38, pp 359–375

    Article  Google Scholar 

  • Stephan, K., and Abdelsalem, S., 1980, “Heat Transfer Correlations for Natural Convection Boiling,” International Journal of Heat and Mass Transfer, Vol 23, pp 73–87

    Article  Google Scholar 

  • Stephan, K. and Mitrovic, J., 1981,”Heat Transfer in Natural Convection Boiling of Refrigerants and Refrigerant-Oil-Mixtures in Bundles of T-Shaped Finned Tubes,” ASME Publication HTD-18, Advances in Enhanced Heat Transfer 1981,eds Webb et al, New York, pp 131–146

    Google Scholar 

  • Tachibana, F., Akiyama, M., and Kawamura, H., 1967, “Non-Hydrodynamic Aspects of Pool Boiling Burnout,” Journal of Nuclear Science and Technology, Vol 4, pp 121–130

    Article  Google Scholar 

  • Tong, W., 1989, “Analysis and Modeling of Nucleate Boiling in Highly-Wetting Liquids,” PhD Thesis, Department of Mechanical Engineering, University of Minnesota

    Google Scholar 

  • Tong, W., Bar-Cohen, A., Simon, T.W., and You, S.M., 1990a, “Contact Angle Effects on Boiling Incipience of Highly-Wetting Liquids,” Int. Journal Heat and Mass Transfer, Vol 33, No. 1, pp 91–104

    Article  Google Scholar 

  • Tong, W., Bar-Cohen, A., and Simon, T.W., 1990b, “Thermal Transport Mechanismsn in Nucleate Pool Boiling of Highly-Wetting Liquids,” Proceedings, 9th International Heat Transfer Conference, Vol 2, pp 27–32, Jerusalem, Israel

    Google Scholar 

  • Tong, W., Bar-Cohen, A., and Simon, T.W., 1991, “Investigation of Bubble Flow Regimes in Nucleate Boiling of Highly-Wetting Liquids,” Proceedings, 3rd ASME/JSME Thermal Engineering Joint Conference, Vol 2, pp 433–439

    Google Scholar 

  • Westwater, W., Zinn, J.C., and Brodbeck, K.J., 1989, “Correlations for Pool Boiling Curves for the Homologous Group: Freons,” ASME Journal of Heat Transfer, Vol 111 , pp 204–206

    Article  Google Scholar 

  • Yokouchi, K., Kamehara, N., and Niwa, K., 1987, Immersion Cooling for High Density Packaging,” Proceedings 37th IEEE Electronics Components Conference, pp 545–549

    Google Scholar 

  • You, S.M., Simon, T.W., and Bar-Cohen, A., 1990a, “Experimental Investigation of Nucleate Boiling Incipience with a Highly-Wetting Dielectric Liquid (R113),” Int. Journal of Heat and Mass Transfer, Vol 33, No. 1, pp 105–113

    Article  Google Scholar 

  • You, S.M., Bar-Cohen, A., Simon, T.W., 1990b, “Boiling Incipience and Nucleate Boiling Heat Transfer of Highly Wetting Liquids from Electronic Materials,” IEEE CHMT Transactions, Vol 12, pp 1032–1039

    Google Scholar 

  • You, S.M., Simon,T.W., Bar-Cohen, A., 1990c, “Experiments on Boiling Incipiencewith a Highly-Wetting Dielectric Fluid; Effects of Pressure, Subcooling and Dissolved Gas Content,” Heat Transfer 1990 - Vol 2, Proceedings of 9th International Heat Transfer Conference, Hemisphere Publishing Company, New York, pp 337–342

    Google Scholar 

  • You, S.M., Simon, T.W., and Bar-Cohen, A., 1991, “Reduced Incipient Superheats in Boiling of Fluids which hold Dissolved Gas,” ASME Publication, HTD-Vol 159, pp 109–117

    Google Scholar 

  • You, S.M., Simon, T.W., and Bar-Cohen, A., 1992, “A Technique for Enhancing Boiling Heat Transfer with Application to Cooling of Electronic Equipment,” Proceedings, IEEE/ASME ITHERM III, IEEE Catalog Number 92CH3096-5, New York, pp 66–73

    Google Scholar 

  • Zuber, N., 1958, “On the Stability of Boiling Heat Transfer, ”Transactions ASME, Vol 80, pp 711–720

    Google Scholar 

  • Zuber, N., 1962, “Nucleate Boiling: The Region of Isolated Bubbles and the Similarity with Natural Convection,” International Journal of Heat and Mass Transfer, Vol 6, pp 53–78

    Article  Google Scholar 

  • Zuber, N., Tribus, M., and Westwater, J.W., 1963, “The Hydrodynamic Crisis in Pool Boiling of Saturated and Subcooled Liquids,” International Developments in Heat Transfer, ASME Publication HTD-27, New York, pp 230–236

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bar-Cohen, A. (1994). Fundamentals of Nucleate Pool Boiling of Highly-Wetting Dielectric Liquids. In: Kakaç, S., Yüncü, H., Hijikata, K. (eds) Cooling of Electronic Systems. NATO ASI Series, vol 258. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1090-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1090-7_20

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4476-9

  • Online ISBN: 978-94-011-1090-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics