Skip to main content

Synthesis, release, and transmission of alfalfa signals to rhizobial symbionts

  • Chapter
Symbiotic Nitrogen Fixation

Part of the book series: Developments in Plant and Soil Sciences ((DPSS,volume 57))

  • 124 Accesses

Abstract

In addition to the flavonoids exuded by many legumes as signals to their rhizobial symbionts, alfalfa (Medicago sativa L.) releases two betaines, trigonelline and stachydrine, that induce nodulation (nod) genes in Rhizobium meliloti. Experiments with 14C-phenylalanine in the presence and absence of phenylalanine ammonia-lyase inhibitors show that exudation of flavonoid nod-gene inducers from alfalfa roots is linked closely to their concurrent synthesis. In contrast, flavonoid and betaine nod-gene inducers are already present on mature seeds before they are released during germination. Alfalfa seeds and roots release structurally different nod-gene-inducing signals in the absence of rhizobia. When R. meliloti is added to roots, medicarpin, a classical isoflavonoid phytoalexin normally elicited by pathogens, and a nod-gene-inducing compound, formononetin-7-O-(6″-O-malonylglycoside), are exuded. Carbon flow through the phenylpropanoid pathway and into the flavonoid pathway via chalcone synthase is controlled by complex cis-acting sequences and trans-acting factors which are not completely understood. Even less information is available on molecular regulation of the two other biosynthetic pathways that produce trigonelline and stachydrine. Presumably the three separate pathways for producing nod-gene inducers in some way protect the plant against fluctuations in the production or transmission of the two classes of signals. Factors influencing transmission of alfalfa nod-gene inducers through soil are poorly defined, but solubility differences between hydrophobic flavonoids and hydrophilic betaines suggest that the diffusional traits of these molecules are not similar. Knowledge derived from studies of how legumes regulate rhizobial symbionts with natural plant products offers a basis for defining new fundamental concepts of rhizosphere ecology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amblès A, Jacquesy J C, Jambu P, Joffre J and Maggi-Churin R 1991 Polar lipid fraction in soil: a kerogen-like matter. Organic Geochem. 17,341–349.

    Article  Google Scholar 

  • Amrhein N and Gödeke K-H 1977 α-Aminooxy-β-phenylpropionic acid -a potent inhibitor of L-phenylalanine ammonia-lyase in vitro and in vivo. Plant Sci. Lett. 8, 313–317.

    Article  CAS  Google Scholar 

  • Ayabe S-I, Udagawa A and Furuya T 1988 NAD(P)H-dependent 6’-deoxychalcone synthase activity in Glycyrrhiza cells induced by yeast extract. Arch. Biochem. Biophys. 261, 458–462.

    Article  PubMed  CAS  Google Scholar 

  • Barz W 1970 Isolation of rhizosphere bacterium capable of degrading flavonoids. Phytochemistry 9, 1745–1749.

    Article  CAS  Google Scholar 

  • Beilstein Handbook of Organic Chemistry. 1991. 4th edition. Springer-Verlag, Berlin.

    Google Scholar 

  • Bernard T, Pocard J-A, Perroud B and Le Rudulier D 1986 Variations in the response of salt-stressed Rhizobium strains to betaines. Arch. Microbiol. 143, 359–364.

    Article  CAS  Google Scholar 

  • Boivin C, Barran L R, Malpica C A and Rosenberg C 1991 Genetic analysis of a region of the Rhizobium meliloti pSym plasmid specifying catabolism of trigonelline, a secondary metabolite present in legumes. J. Bacteriol. 173,2809–2817.

    PubMed  CAS  Google Scholar 

  • Caetano-Anollés G, Crist-Estes D K and Bauer W D 1988 Chemotaxis of Rhizobium meliloti to the plant flavone luteolin requires functional nodulation genes. J. Bacteriol. 170,3164–3169.

    PubMed  Google Scholar 

  • Cooper J E and Rao J R 1992 Localized changes in flavonoid biosynthesis in roots of Lotus pedunculatus after infection by Rhizobium loti. Plant Physiol. 100, 444–450.

    Article  PubMed  CAS  Google Scholar 

  • Dakora F D, Joseph C M and Phillips D A 1993 Alfalfa root exudates contain isoflavonoids in the presence of Rhizobium meliloti. Plant Physiol. 101, 819–824.

    PubMed  CAS  Google Scholar 

  • Dalkin K, Edwards R, Edington B and Dixon R A 1990 Stress responses in alfalfa (Medicago sativa L.) I. Induction of phenylpropanoid biosynthesis and hydrolytic enzymes in elicitor-treated cell suspensions cultures. Plant Physiol. 92, 440–446.

    Article  PubMed  CAS  Google Scholar 

  • D’ Arcy-Lameta A 1986 Study of soybean and lentil root exudates II. Identification of some polyphenolic compounds, relation with plantlet physiology. Plant and Soil 92, 113–123.

    Article  Google Scholar 

  • Dénarié J, Debellé F and Rosenberg C 1992 Signaling and host range variation in nodulation. Annu. Rev. Microbiol. 46,497–531.

    Article  PubMed  Google Scholar 

  • Dharmatilake A J and Bauer W D 1992 Chemotaxis of Rhi zobium meliloti towards nodulation gene-inducing compounds from alfalfa roots. Appl. Environ. Microbiol. 58, 1153–1158.

    PubMed  CAS  Google Scholar 

  • Dixon R A and Lamb C J 1990 Regulation of secondary metabolism at the biochemical and genetic levels. In Secondary Products from Plant Tissue Culture. Ed. B V Charl-wood and M J C Rhodes. pp 103–118. Clarendon Press, Oxford.

    Google Scholar 

  • Dornbos D L, Spencer G F and Miller R W 1990 Medicarpin delays alfalfa seed germination and seedling growth. Crop Sci. 30, 162–166.

    Article  CAS  Google Scholar 

  • Estabrook, E M and Sengupta-Gopalan C 1991 Differential expression of phenylalanine ammonia-lyase and chalcone synthase during soybean nodule development. Plant Cell 3, 299–308.

    PubMed  CAS  Google Scholar 

  • Firmin J L, Wilson K E, Rossen L and Johnston A W B 1986 Flavonoid activation of nodulation genes in Rhizobium reversed by other compounds present in plants. Nature 324, 90–92.

    Article  CAS  Google Scholar 

  • Fisher R F and Long S R 1992 Rhizobium-plmí signal exchange. Nature 357, 655–660.

    Article  PubMed  CAS  Google Scholar 

  • Fougère F and Le Rudulier D 1990 Uptake of glycine betaine and its analogues by bacteroids of Rhizobium meliloti. J. Gen. Microbiol. 136, 157–163.

    Article  PubMed  Google Scholar 

  • Gajendiran N and Mahadevan A 1990 Utilization of phenolic substances by Rhizobium sp. Ind. J. Exp. Biol. 28, 1136–1140.

    CAS  Google Scholar 

  • Geissman T A and Clinton R O 1946 Flavanones and related compounds. I. The preparation of polyhydroxyçhalcones and flavanones. J. Am. Chem. Soc. 68, 697–700..

    Article  PubMed  CAS  Google Scholar 

  • Gloux K and Le Rudulier D 1989 Transport and catabolism of proline betaine in salt stressed Rhizobium meliloti. Arch. Microbiol. 151, 143–148.

    Article  CAS  Google Scholar 

  • Goldmann A, Boivin C, Fleury V, Message B, Lecoeur L, Maille M and Tepfer D 1991 Betaine use by rhizosphere bacteria: genes essential for trigonelline, stachydrine, and carnitine catabolism in Rhizobium meliloti are located on pSym in the symbiotic region. Mol. Plant-Microbe Inter.4, 571–578.

    Article  CAS  Google Scholar 

  • Göttfert M, Horvath B, Kondorosi E, Putnoky P, Rodriguez-Quinones F and Kondorosi A 1986 At least two different nodD genes are necessary for efficient nodulation on alfaifa by Rhizobium meliloti. J. Mol. Biol. 191, 411–420.

    Article  PubMed  Google Scholar 

  • Gustine D L, Sherwood R T and Vance C P 1978 Regulation of phytoalexin synthesis in jackbean callus cultures. Plant Physiol. 61, 226–230.

    Article  PubMed  CAS  Google Scholar 

  • Hans N and Grover S K 1993 An efficient conversion of 2’-hydroxychalcones to flavones. Synthetic Comm. 23, 1021–1023.

    Article  CAS  Google Scholar 

  • Harborne J B (Ed.) 1988 The Flavonoids, Advances in Research Since 1980. Chapman and Hall, London. 621P.

    Google Scholar 

  • Harrison M J, Choudhary A D, Dubery I, Lamb C J and Dixon R A 1991a Stress responses in alfalfa (Medicago sativa L.). 8. Cis-elements and trans-acting factors for the quantitative expression of a bean chalcone synthase gene promoter in electroporated alfalfa protoplasts. Plant Molec. Biol. 16, 877–890.

    Article  CAS  Google Scholar 

  • Harrison M J, Lawton M A, Lamb C J and Dixon R A 1991b Characterization of a nuclear protein that binds to three elements within the silencer region of a bean chalcone synthase gene promoter. Proc. Natl. Acad., Sci. USA 88, 2515–2519.

    Article  CAS  Google Scholar 

  • Hartwig U A, Joseph C M and Phillips D A 1991 Flavonoids released naturally from alfalfa seeds enhance growth rate of Rhizobium meliloti. Plant Physiol. 95, 797–803.

    Article  PubMed  CAS  Google Scholar 

  • Hartwig U A, Maxwell C A, Joseph C M and Phillips D A 1990a Chrysoeriol and luteolin released from alfalfa seeds induce nod genes in Rhizobium meliloti. Plant Physiol. 92, 116–122.

    Article  PubMed  CAS  Google Scholar 

  • Hartwig U A, Maxwell C A, Joseph C M and Phillips D A 1990b Effects of alfalfa nod gene-inducing flavonoids on nodABC transcription in Rhizobium meliloti strains containing different nodD genes. J. Bacteriol. 172,2769–2773.

    PubMed  CAS  Google Scholar 

  • Hartwig U A and Phillips D A 1991 Release and modification of nod-gene-inducing flavonoids from alfalfa seeds. Plant Physiol. 95, 804–807.

    Article  PubMed  CAS  Google Scholar 

  • Harwood L M, Loftus G C, Oxford A and Thomson C 1990 An improved procedure for cyclisation of chalcones to flavanones using celite supported potassium fluoride in methanol: total synthesis of bavachinin. Syn. Comm. 20, 649–657.

    Article  CAS  Google Scholar 

  • Honma M A and Ausubel F M 1987 Rhizobium meliloti has three functional copies of the nodD symbiotic regulatory gene. Proc. Natl. Acad. Sci., USA 84, 8558–8562.

    Article  PubMed  CAS  Google Scholar 

  • Hungria M, Joseph C M and Phillips D A 1991 Anthocyanidins and flavonols, major nod-gene inducers from seeds of a black-seeded common bean (Phaseolus vulgaris L.). Plant Physiol. 97, 751–758.

    Article  PubMed  CAS  Google Scholar 

  • Ingham J L 1983 Naturally occurring isoflavonoids (1855-1981). Fortschritte d. Chem. org. Naturst. 43, 1–266.

    CAS  Google Scholar 

  • Jones G P, Naidu B P, Starr R K and Paleg L G 1986 Estimates of solutes accumulating in plants by 1H nuclear magnetic resonance spectroscopy. Aust. J. Plant Physiol. 13, 649–658.

    Article  CAS  Google Scholar 

  • Kosslak R M, Bookland R, Barkei J, Paaren H E and Appelbaum E R 1987 Induction of Bradyrhizobium japonicum common nod gene by isoflavones isolated from Glycine max. Proc. Natl. Acad. Sci., USA 84, 7428–7432.

    Article  PubMed  CAS  Google Scholar 

  • Köster J, Strack D and Barz W 1983 High performance liquid chromatographic separation of isoflavones and structural elucidation of isoflavone 7-O-glucoside 6“malonates from Cicer arietinum. J. Med. Planta Res. 48, 131–135.

    Article  Google Scholar 

  • Lam S T, Ellis D M and Ligon J M 1991 Genetic approaches for studying rhizosphere colonization. In The Rhizosphere and Plant Growth. Ed. D L Keister and P B Cregan. pp 43–50. Kluwer Academic Publ, Dordrecht.

    Chapter  Google Scholar 

  • León-Barrios M, Dakora F D, Joseph C M and Phillips D A 1993 Isolation of Rhizobium meliloti nod gene inducers from alfalfa rhizosphere soil. Appl. Environ. Microbiol. 59, 636–639.

    PubMed  Google Scholar 

  • Loake G J, Choudhary A D, Harrison M J, Mavandad M, Lamb C J and Dixon R A 1991 Phenylpropanoid pathway intermediates regulate transient expression of a chalcone synthase gene promoter. Plant Cell 3, 829–840.

    PubMed  CAS  Google Scholar 

  • Maxwell C A, Edward R and Dixon R A 1992 Identification, purification and characterization of S-adenosyl-L-methonine: isoliquiritigenin 2’-O-methyltransferase from alfalfa (Medicago sativa L.). Arch. Biochem. Biophys. 293, 158–166.

    Article  PubMed  CAS  Google Scholar 

  • Maxwell C A, Harrison M J and Dixon R A 1993 Molecular characterization and expression of alfalfa isoliquiritigenin 2’-O-methyltransferase, an enzyme specifically involved in the biosynthesis of a transcriptional activator of Rhizo bium meliloti nodulation genes. Plant J. 4, 971–981.

    Article  PubMed  CAS  Google Scholar 

  • Maxwell C A, Hartwig U A, Joseph C M and Phillips D A 1989 A chalcone and two related flavonoids released from alfalfa roots induce nod genes in Rhizobium meliloti. Plant Physiol. 91, 842–847.

    Article  PubMed  CAS  Google Scholar 

  • Maxwell C A and Phillips D A 1990 Concurrent synthesis and release of nod-gene-inducing flavonoids from alfalfa roots. Plant Physiol. 93, 1552–1558.

    Article  PubMed  CAS  Google Scholar 

  • Morgan A and Marion L 1956 The biogenesis of alkaloids XVII. Further study of the role of ornithine in the biogenesis of stachydrine. Can. J. Chem. 34, 1704–1708.

    Article  CAS  Google Scholar 

  • Musich J A and Rapoport H 1977 Reaction of O-methyl-N,N’-diisopropylisourea with amino acids and amines. J. Org. Chem. 42, 139–141.

    Article  PubMed  CAS  Google Scholar 

  • Parniske M, Zimmermann C, Cregan P B and Werner D 1990 Hypersensitive reaction of nodule cells in the Glycine sp./Bradyrhizobium japonicum-symbiosis occurs at the genotype-specific level. Bot. Acta 103, 143–148.

    Google Scholar 

  • Peters N K, Frost J W and Long S R 1986 plant flavone, luteolin, induces expression of Rhizobium meliloti nodulation genes. Science 233, 977–980.

    Article  PubMed  CAS  Google Scholar 

  • Phillips D A 1992 Flavonoids: plant signals to soil microbes. In Phenolic Metabolism in Plants. Eds. H A Stafford and R K Ibrahim, Plenum Press, New York. Rec. Adv. Phytochem. 26, 201–231.

    Chapter  Google Scholar 

  • Phillips D A, Dakora F D, León-Barrios M, Sande E and Joseph C M 1993 Signals released from alfalfa regulate microbial activities in the rhizosphere. In New Horizons in Nitrogen Fixation. Ed. R Palacios, J Mora and W E Newton. pp 197–206. Nijhoff/Junk, Dordrecht.

    Google Scholar 

  • Phillips D A, Joseph C M and Maxwell C A 1992 Trigonelline and stachydrine released from alfalfa seeds activate NodD2 protein in Rhizobium meliloti. Plant Physiol. 99, 1526–1531.

    Article  PubMed  CAS  Google Scholar 

  • Rao J R, Sharma N D, Hamilton J T G, Boyd D R and Cooper J E 1991 Biotransformation of the pentahydroxy flavone quercetin by Rhizobium loti and Bradyrhizobium strains (Lotus). Appl. Environ. Microbiol. 57, 1563–1565.

    PubMed  CAS  Google Scholar 

  • Recourt K, Schripsema J, Kijne J W, Van Brussel A A N and Lugtenberg B J J 1991 Inoculation of Vicia sativa subsp. nigra roots with Rhizobium leguminosarum biovar viciae results in release of nod gene activating flavanones and chalcones. Plant Mol. Biol. 16, 841–852.

    Article  PubMed  CAS  Google Scholar 

  • Recourt K, van Tunen A J, Mur L A, van Brussel A A N, Lugtenberg B J J and Kijne J W 1992 Activation of flavonoid biosynthesis in roots of Vicia sativa subsp. nigra by inoculation with Rhizobium leguminosarum biovar viciae. Plant Molec. Biol. 19: 411–420.

    Article  CAS  Google Scholar 

  • Redmond J W, Batley M, Djordjevic M A, Innes R W, Kuempel P L and Rolfe B G 1986 Flavones induce expression of nodulation genes in Rhizobium. Nature 323, 632–635.

    Article  CAS  Google Scholar 

  • Robertson A V and Marion L 1960 The biogenesis of alkaloids XXV. The role of hygric acid in the biogenesis of stachydrine. Can. J. Chem. 38, 396–398.

    Article  CAS  Google Scholar 

  • Rolfe B G, Batley M, Redmond J W, Richardson A E, Simpson R J, Bassam B J, Sargent C L, Weinman J J, Djordjevic M A, and Dazzo F B 1988 Phenolic compounds secreted by legumes. In Nitrogen Fixation: Hundred Years After. Ed. H Bothe, F J de Bruijn and W E Newton. pp 405–409. Gustav Fischer, Stuttgart.

    Google Scholar 

  • Rovira A D and Harris J R 1961 Plant root excretions in relation to the rhizosphere effect V. The exudation of Bgroup vitamins. Plant and Soil 14, 199–214.

    Article  CAS  Google Scholar 

  • Ryder T B, Hedrick S A, Bell J N, Liang X, Clouse S D and Lamb C J 1987 Organization and differential activation of a gene family encoding the plant defense enzyme chalcone synthase. Molec. Gen. Genet. 210, 219–233.

    Article  PubMed  CAS  Google Scholar 

  • Sanjuan J and Olivares J 1989 Implication of nifA in the regulation of genes located on a Rhizobium meliloti cryptic plasmid that affects nodulation efficiency. J. Bacteriol. 171,4154–4161.

    PubMed  CAS  Google Scholar 

  • Schmidt J, John M, Wieneke U, Krüssmann H-D and Schell J 1986 Expression of the nodulation gene nodA in Rhizo bium meliloti and localization of the gene product in the cytosol. Proc. Natl. Acad. Sci., USA 83, 9581–9585.

    Article  PubMed  CAS  Google Scholar 

  • Seshadri TR 1962 Interconversions of flavonoid compounds. In The Chemistry of Flavonoid Compounds. Ed. T A Geissman. pp. 156–196. McMillan, NY.

    Google Scholar 

  • Sethi J K and Carew D P 1974 Growth and betaine formation in Medicago sativa tissue cultures. Phytochemistry 13, 321–324.

    Article  CAS  Google Scholar 

  • Siqueira J O, Nair M G, Hammerschmidt R and Safir G R 1991 Significance of phenolic compounds in plant-soilmicrobial systems. Crit. Rev. Plant Sci. 10, 63–121.

    Article  CAS  Google Scholar 

  • Spaink H P 1992 Rhizobial lipo-oligosaccharides: answers and questions. Plant Molec. Biol. 20, 977–986.

    Article  CAS  Google Scholar 

  • Srivastava S D and Srivastava S K 1987 Synthesis of a new flavone Ind. J. Chem. 26B, 257–58.

    Google Scholar 

  • Stafford H A 1990 Flavonoid Metabolism. CRC Press, Boca Raton, Florida. 298 p.

    Google Scholar 

  • Steenbock H 1918 Isolation and identification of stachydrin from alfalfa hay. J. Biol. Chem. 35, 1–13.

    CAS  Google Scholar 

  • Taguchi H, Nishitani H, Okumura K, Shimabayashi Y and lwai K 1989a Biosynthesis and metabolism-of NAD in Lemna paucicostata 151. Agric. Biol. Chem. 53, 1543–1549.

    Article  CAS  Google Scholar 

  • Taguchi H, Nishitani H, Okumura K, Shimabayashi Y and lwai K 1989b Biosynthesis and metabolism of trigonelline in Lemna paucicostata 151. Agric. Biol. Chem. 53, 2867–2871.

    Article  CAS  Google Scholar 

  • Taguchi H and Shimabayashi Y 1983 Findings of trigonelline demethylating enzyme activity in various organisms and some properties of the enzyme from hog liver. Biochem. Biophys. Res. Comm. 113, 569–574.

    Article  PubMed  CAS  Google Scholar 

  • Tramontano W A, McGinley P A, Ciancaglini E F and Evans L S 1986 A survey of trigonelline concentrations in dry seeds of the Dicotyledoneae. Environ. Expt. Bot. 26, 197–205.

    Article  CAS  Google Scholar 

  • Upmeier B, Gross W, Köster S and Barz W 1988 Purification and properties of S-adenosyl-L-methionine: nicotinic acid-N-methyltransferase from cell suspension cultures of Glycine max L. Arch. Biochem. Biophys. 262, 445–454.

    Article  PubMed  CAS  Google Scholar 

  • Welle R and Grisebach H 1989 Phytoalexin synthesis in soybean cells: elicitor induction of reductase involved in biosynthesis of 6’-deoxychalcone. Arch. Biochem. Biophy. 272, 97–102.

    Article  CAS  Google Scholar 

  • Wiehler G and Marion L 1958 The biogenesis of alkaloids XX. The induced biogenesis of stachydrine. J. Biol. Chem. 231,799–805.

    PubMed  CAS  Google Scholar 

  • Wolk C P, Cai Y and Panoff J M 1991 Use of a transposon with luciferase as a reporter to identify environmentally responsive genes in a cyanobacterium. Proc. Natl. Acad. Sci., USA 88, 5355–5359.

    Article  PubMed  CAS  Google Scholar 

  • Wyn Jones R G and Storey R 1981 Betaines In Physiology and Biochemistry of Drought Resistance in Plants. Ed. L G Paleg and D Aspinall. pp 171–204. Academic Press, Sydney.

    Google Scholar 

  • Zoń J and Amrhein N 1992 Inhibitors of phenylalanine ammmonia-lyase: 2-aminoindan-2-phophonic acid and related compounds. Liebigs Ann. Chem. 1992, 625–628.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

P. H. Graham M. J. Sadowsky C. P. Vance

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Phillips, D.A., Dakora, F.D., Sande, E., Joseph, C.M., Zoń, J. (1994). Synthesis, release, and transmission of alfalfa signals to rhizobial symbionts. In: Graham, P.H., Sadowsky, M.J., Vance, C.P. (eds) Symbiotic Nitrogen Fixation. Developments in Plant and Soil Sciences, vol 57. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1088-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1088-4_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4475-2

  • Online ISBN: 978-94-011-1088-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics