Skip to main content

Ammonium sensing in nitrogen fixing bacteria: Functions of the glnB and glnD gene products

  • Chapter
  • 122 Accesses

Part of the book series: Developments in Plant and Soil Sciences ((DPSS,volume 57))

Abstract

A plentiful supply of fixed nitrogen as ammonium (or other compounds such as nitrate or amino acids) inhibits nitrogen fixation in free-living bacteria by preventing nitrogenase synthesis and/or activity. Ammonium and nitrate have variable effects on the ability of Rhizobiaceae (Rhizobium, Bradyrhizobium and Azorhizobium) species to nodulate legume hosts and on nitrogen fixation capacity in bacteroid cells contained in nodules or in plant-free bacterial cultures. In addition to effects on nitrogen fixation, excess ammonium can inhibit activity or expression of other pathways for utilization of nitrogenous compounds such as nitrate (through nitrate and nitrite reductase), or glutamine synthetase (GS) for assimilation of ammonium. This paper describes the roles of two key genes glnB and glnD, whose gene products sense levels of fixed nitrogen and initiate a cascade of reactions in response to nitrogen status. While work on Escherichia coli and other enteric bacteria provides the model system, glnB and, to a lesser extent, glnD have been studied in several nitrogen fixing bacteria. Such reports will be reviewed here. Recent results on the identity and function of the glnB and glnD gene products in Azotobacter vinelandii (a free-living soil diazotroph) and in Rhizobium leguminosarum biovar viciae, hereinafter designated R.l. viciae will be presented. New data suggests that Azotobacter vinelandii probably contains a glnB-like gene and this organism may have two glnD-like genes (one of which was recently identified and named nfrX). In addition, evidence for uridylylation of the glnB gene product (the PII protein) of R. l. viciae in response to fixed nitrogen deficiency is presented. Also, a glnB mutant of R. l. viciae has been isolated; its characteristics with respect to expression of nitrogen regulated genes is described.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

KD:

kiloDaltons

kb:

kilobase

UMP:

uridine monophosphate

References

  • Adler S P, Punch D and Stadtman E R 1975 Cascade control of Escherichia coli glutamine synthetase. Properties of the Pn regulator protein and the uridylyltransferaseuridylylremoving enzyme. J.Biol.Chem.250, 6264–6272

    Google Scholar 

  • Austin S, Henderson N and Dixon R 1987 Requirements for transcriptional activation in vitro of the nitrogen regulated glnA and nifLA promoters from Klebsiella pneumoniae: dependence on activator concentration. Mol.Microbiol.1, 92–100.

    Article  PubMed  CAS  Google Scholar 

  • Bali A, Blanco G, Hill S and Kennedy C 1992 Excretion of ammonium by a nifL mutant of nitrogen fixing Azotobac ter vinelandii. Appl.Environ.Microbiol 58, 1711–1718

    PubMed  CAS  Google Scholar 

  • Bender RA 1991 The role of the NAC Protein in the nitrogen regulation of Kiebsiella Appl.Environ.Microbiol. 58, 1711–1718.

    Google Scholar 

  • Bennett L T, Cannon F C and Dean D 1988, Nucleotide sequence and mutagenesis of the nifA gene from Azoto bacter vinelandii. Mol.Microbiol. 2, 315–321.

    Article  PubMed  CAS  Google Scholar 

  • Blanco G, Drummond M D, Kennedy C and Woodley P 1993 Molecular analysis of the nifL gene of Azotobacter vinelandii. Mol.Microbiol. 9, 869–879.

    Article  PubMed  CAS  Google Scholar 

  • Bueno R, Pahel G and Magasanlk B 1985 Role of glnB and glnD gene products in regulation of the glnALG operon of Escherichia coli. J.Bacteriol. 164, 816–822.

    PubMed  CAS  Google Scholar 

  • Carlson T A, Guerinot M L and Chelm B K 1985 Characterization of the gene encoding glutamine synthetase 1 (glnA) from Bradyrhizobium japonicum. J.Bacteriol 162, 698–703.

    PubMed  CAS  Google Scholar 

  • Chiurazzi M, and Lacarino M 1990 Transcriptional analysis of the glnB-glnA region of Rhizobium leguminosarum biovar viciae. Mol. Microbiol. 4, 1727–1735

    Article  PubMed  CAS  Google Scholar 

  • Chiurazzi M, Meza R, Lara M, Lahm A, Defez R, Iaccarino M and Espim G 1992 The Rhizobium leguminosarum bi ovar phaseoli glnT gene ,encoding glutamine synthetase 111. Gene 119, 1–8.

    Article  PubMed  CAS  Google Scholar 

  • Chock P B, Rhee S G and Stadtman R R 1980 Interconvertible enzyme cascades in cellular recognition. Annu. Rev. Biochem. 49, 813–843.

    Article  PubMed  CAS  Google Scholar 

  • Colonna-Romano S, Riccio A, Guida M, Defez R, Lamberti A, Iaccaiino M, Arnold W, Priefer U and Puhler A 1987 Tight linkage of glnA and a putative regulatory gene in Rhizobium leguminosarum. Nucl.Acids Res. 15, 1951–1964

    Article  PubMed  CAS  Google Scholar 

  • Colonna-Romano S, Patriarca E J, Amar M, Bernard P, Manco G, Lamberti A, Iaccarino M and Defez R 1993 Uridylylation of the PII protein in Rhizobium leguminosarum. Febs Letts. 330, 95–98.

    Article  CAS  Google Scholar 

  • Contreras C, Drummond M, Bali A, Blanco G, Garcia E, Bush G, Kennedy C and Merrick M 1991 The product of the nitrogen fixation regulatory gene nfrX of Azotobacter vinelandii is functionally and structurally homologous to the uridylyltransferase encode by glnD in enteric bacteria. J.Bacteriol. 24, 7741–7749.

    Google Scholar 

  • Darrow R A, Crist D, Evans W R, Jones B L, Keister D L and Knotts R R 1981 Biochemical and physiological studies on the two glutamine synthetases of Rhizobium. In Current Perspectives in NitrogenFixation.Eds A H Gibson and W E Newton. Australian Academy of Sciences, Canberra.

    Google Scholar 

  • De Bruijn F J, Rossbach S, Schneider M, Ratet P, Messmer S, Szeto W W, Ausubel F M and Schell J 1989 Rhizobium meliloti 1021 has three differentially regulated loci involved in glutamine biosynthesis, none of which is essential for symbiotic nitrogen fixation. J.Bacteriol. 171, 1673–1682.

    PubMed  Google Scholar 

  • De Zamaroczy M, Delorme F and Elmerich C 1990 Characterization of three different nitrogen-regulated promoter regions for the expression of glnB and glnA in Azospiril lum brasilense. Mol.Gen.Genet.224, 421–430.

    Article  PubMed  Google Scholar 

  • De Zamaroczy M, Paquelin A and Emerick C 1993 Functional organization of the glnB-glnA cluster of Azospirilium brasilense. J. Bacteriol. 175, 2507–2515.

    PubMed  Google Scholar 

  • Dean D and Jacobson M R 1992 Biochemical genetics of nitrogenase. In Biological Nitrogen Fixation. Eds. G Stacey, H J Evans adn R Burris. Chapman & Hall, New York, pp 763–834.

    Google Scholar 

  • Defez R, Chiurazzi M, Manco G, Lamberti P, Riccio A, Lopes C, Colonna-Romnano S, Moreno S, Meza R, Espin G and Iaccarino M 1990 The glutamine synthetases of Rhizobium leguminosarum and their regulatory genes. In Nitrogen Fixation. Achievements and Objectives. Eds. P M Greshoff, J Roth, G Stacey and W E Newton. Chapman and Halll, New York, pp 715–716.

    Google Scholar 

  • Dusha L, Bakos A, Kondorosi A, de Bruijn F J and Schell J 1989 The Rhizobium meliloti early nodulation genes (nodABC) are nitrogen-regulated: isolation of a mutant strain with efficient nodulation capacity on alfalfa in the presence of ammonium. Mol.Gen.Genet.21, 89–96

    Google Scholar 

  • Espin G, Moreno S, Wild M, Meza R and Iaccarino M 1990 A previously unrecognized glutamine synthetase expressed in Klebsiella pneumoniae from the glnT locus of Rhizo bium leguminosarum. Mol.Gen.Genet.223, 513–516.

    Article  PubMed  CAS  Google Scholar 

  • Filser M, Moscatelli C, Lamberti A, Vincze E, Guida M, Salzano Gand Iaccarino M 1986 Characterization and cloning of two Rhizobium leguminosarum genes coding for glutamine synthetase activities. J.Gen.Microbiol.132, 2561–2569.

    PubMed  CAS  Google Scholar 

  • Foor F, Reuveny Z and Magasanik B 1980 Regulation of the synthesis of glutamine synthetase by the Pn protein in Klebsiella aerogenes. Proc.Acad.Sci. USA 77, 2636–2640.

    Article  CAS  Google Scholar 

  • Foster-Hartnett D and Kranz R G 1992 Analysis of the promoters and upstream sequences of nifA1 and nifA2 in Rhodobacter capsulatus -Activation requires ntrC but not rpoN. Mol.Microbiol. 6, 1049–1060.

    Article  PubMed  CAS  Google Scholar 

  • Foster-Harmett D, Cullen P J, Gabbert K K and Kranz R G 1993 Sequence, genetic, and lacZ fusion analyses of a nifR3-ntrB-ntrC operon in Rhodobacter capsulatus. Mol.Microbiol. 8, 903–914.

    Article  Google Scholar 

  • FuchsR L and Keister D L 1980 Comparative properties of glutamine synthetase I and II in Rhizobium and Agrobac terium spp. J.Bacteriol. 144, 641–648.

    PubMed  CAS  Google Scholar 

  • Garcia E and Rhee S G 1983 Cascade control of Escherichia coli glutamine synthetase. J.Biol.Chem.258, 2246–2253

    PubMed  CAS  Google Scholar 

  • Hallenbeck P C 1992 Mutations affecting nitrogenase switch-off in Rhodobacter capsulatus. Biochim. Biophys. Acta 1118,161–168.

    Article  PubMed  CAS  Google Scholar 

  • Hawkins F K L, Kennedy C and Johnston A W B 1991 A Rhizobium leguminosarum gene required for symbiotic nitrogen fixation, melanin synthesis and normal growth on certain growth media. J.Gen.Microbiol.137, 1721–1728.

    Article  CAS  Google Scholar 

  • He B, Choi K Y and Zalkin H 1993 Regulation of Escherichia coli glnB, prsA and speA by the purine repressor. J.Bacteriol. 175, 3598–3606

    PubMed  CAS  Google Scholar 

  • Holtel H and Merrick M 1988 Identification of the Klebsiella pneumoniae glnB gene: nucleotide sequence of wild-type and mutant alleles. Mol.Gen.Genet.215, 134–138.

    Article  PubMed  CAS  Google Scholar 

  • Holtel A and Merrick M J 1989 The Klebsiella pneumoniae PII protein (glnB gene product) is not absolutely required for nitrogen regulation and is not involved in NifL -mediated nif gene regulation. Mol.Gen.Genet.217, 474–480.

    Article  PubMed  CAS  Google Scholar 

  • Keener J and Kustu S 1988 Protein kinase and phosphoprotein phosphatase activities of nitrogen regulatory proteins NTRB and NTRC of enteric bacteria: Roles of the conserved amino-terminal domain of NTRC. Proc.Natl.Acad.Sci.USA 85, 4976–4980.

    Article  PubMed  CAS  Google Scholar 

  • Kennedy C and Toukdarian A 1987 Genetics of azotobacters: applications to nitrogen fixation and related aspects metabolism. Annu. Rev.Microbiol.41, 227–248.

    Article  PubMed  CAS  Google Scholar 

  • Klipp W, Masepohl B and Puhler A 1988 Identification and mapping of nitrogen fixation genes of Rhodobacter cap sulatus: Duplication of a nifA-niß region. J.Bacteriol.17, 693–699.

    Google Scholar 

  • Kranz R G, Pace W M and Caldicott I M 1990 Inactivation, sequence, and lacZ fusion analysis of a regulatory locus required for repression of nitrogen fixation genes in Rhodobacter capsulatus. J.Bacteriol.172, 53–62.

    PubMed  CAS  Google Scholar 

  • Kranz R G and Foster-Hartnett D 1990 Transcriptional regulatory cascade of nitrogen-fixation genes in anoxygenic photosynthetic bacteria: oxygen-and nitrogen-responsive factors. Mol.Microbiol.4, 1793–1800.

    Article  PubMed  CAS  Google Scholar 

  • Kranz R G and Haselkorn R 1988 Ammonia-constitutive nitrogen fixation mutants of Rhodobacter capsulatus. Gene 71, 65–74.

    Article  PubMed  CAS  Google Scholar 

  • Kustu S, Hirschman J, Burton D, Jelesko J and Meeks J C 1984 Covalent modification of bacterial glutamine synthetase: physiological significance. Mol.Gen.Genet .197, 309–317.

    Article  PubMed  CAS  Google Scholar 

  • Leonardo J M and Goldberg R B 1980 Regulation of nitrogen metabolism in glutamine auxotrophs of Klebsiella pneumoniae. J. Bacteriol, 142, 99–110.

    PubMed  CAS  Google Scholar 

  • Liang Y Y, De Zamaroczy M, Arsene F, Paquelin A and Elmerich C 1992 Regulation of nitrogen fixation in Azospirillum brasilenseSp7: Involvement of nifA, glnA and glnB gene products. FEMS 100, 113–120

    CAS  Google Scholar 

  • Luque F, Santero E, Medina J R and Tortolero M 1987 Mutants of Azotobacter vinelandii altered in the regulation of nitrate assimulation. Arch.Microbiol.148, 231–235.

    Article  CAS  Google Scholar 

  • Magasanik B 1982 Genetic control in nitrogen assimilation in bacteria. Annu. Rev. Genet. 16, 135–168.

    Article  PubMed  CAS  Google Scholar 

  • Magasanik B 1988 Reversible phosphorylation of an enhancer binding protein regulates the transcription of bacterial nitrogen utilization genes. Trends Biochem.Sci.13, 475–479

    Article  PubMed  CAS  Google Scholar 

  • Martin G B, Thomashow M F and Chelm B K 1989 Bradyrhi zobium japonicum glnB ,a putative nitrogen-regulatory gene, is regulated by NtrC at tandem promoters. J. Bacteriol 171, 5638–5645.

    PubMed  CAS  Google Scholar 

  • Merrick M J 1992 Regulation of nitrogen fixation genes in free-living and symbiotic bacteria. In Biological Nitrogen Fixation. Eds. G Stacey, H J Evans and R H Burris. Chapman and Hall, New York, pp 835–876.

    Google Scholar 

  • Minchin S D, Austin S and Dixon R A 1988 The role of activator binding sites in transcriptional control of the divergently transcribed nifF and nifLA promoters from Klebsiella pneumoniae. Mol.Microbiol.2, 433–442

    Article  PubMed  CAS  Google Scholar 

  • Ninfa A J and Magasanik B 1986 Covalent modification of the glnG product, NRI, by the glnL product, NRII, regulates the transcription of the glnALG operon in Escherichia coli. Proc.Natl.Acad.Sci.USA 83, 5909–5913.

    Article  PubMed  CAS  Google Scholar 

  • Ninneman O 1992 The E.coli fis promoter is subject to stringent control and autoregulation. EMBO J. 11, 1075–1083.

    Google Scholar 

  • Nixon B T, Ronson C W and Ausubel F M 1986 Two-component regulatory systems responsive to environmental stimuli share strongly conserved domains with the nitrogen assimilation regulatory genes ntrB and ntrC. Proc.Natl.Acad.Sci.USA 83, 7850–7854

    Article  PubMed  CAS  Google Scholar 

  • Pate J S and Dart P J 1961 Nodulation studies in legumes. Plant and Soil 15, 329–345.

    Article  CAS  Google Scholar 

  • Patriarca E J, Chiurazzi M, Manco G, Riccio A, Lamberti A, De Paolis A, Rossi M, Defez R and Iaccarino M 1992 Activation of the Rhizobium leguminosarum glnII gene by NtrC is dependent on upstream DNA sequences. Mol.Gen.Gen. 234, 337–345.

    Article  CAS  Google Scholar 

  • Patriarca E J, Riccio A, Tate R, Colonna-Romano S, Iaccarino M amd Defez R 1994 The ntrBC genes of Rhizobium leguminosarum are part of a complex operon subject to negative autoregulation. Mol.Microbiol. (In press).

    Google Scholar 

  • Pawlowski K, Klosse U and de Bruijn F J 1991 Characterization of a nove Azorhizobium caulinodans ORS571 two-component regulatory system, NtrY/NtrX involved in nitrogen fixation and metabolism. Mol.Gen.Genet 239, 124–138.A

    Article  Google Scholar 

  • Popham D L, Szeto D, Keener J and Kustu S 1989 Function of a bacterial activator protein that binds to transcriptional enhancers. Science 243, 629–635.

    Article  PubMed  CAS  Google Scholar 

  • Reitzer L J and Magasanik B 1986 Transcription of glnA in E. coli is stimulated by activator bound to sites far from the promoter. Cell 45, 785–792.

    Article  PubMed  CAS  Google Scholar 

  • Reitzer L J and Magasanik B 1987 Ammonia assimilation and the biosynthesis of glutamine, glutamate, aspartate, asparagine, L-alanine, and D-alanine. In Escherichia coli and Salmonella typhimurium. Cellular and Molecular Biology. Volume 1 Ed. F C Neidhardt. American Society for Microbiology, Washington DC. pp 302–320.

    Google Scholar 

  • Rhee S G, Chock P B and Stadtman E R 1985 Nucleotidylations involved in the regulation of glutamine synthetase in Escherichia coli. In The Enzymology of Post-translational Modifications of Proteins. Volume 2. Eds. R B Freedman and H C Hawkins. Academic Press Inc., New York, pp 273.

    Google Scholar 

  • Rhee S G, Park S C and Koo J H 1985b The role of adenylyltransferase and uridylyltransferase in the regulation of glutamine synthetase in Escherichia coli. Cur.Top.Cell.Reg. 27, 221–232.

    CAS  Google Scholar 

  • Roberts G and Ludden P 1992 Nitrogen Fixation by Photosynthetic bacteria. In Nitrogen Fixation. Ed. G Stacey. Chapman and Hall, New York, pp 135–165.

    Google Scholar 

  • Santero E, Toukdarian A, Humphrey R and Kennedy C 1988 Identification and characterization of two nitrogen fixation regulatory regions nifA and nfrX in Azotobacter vinelandii and Azotobacter chroococcum. Mol. Microbiol. 2, 303–314.

    Article  PubMed  CAS  Google Scholar 

  • Shatters R G, Liu Y and Kahn M L 1993 Isolation and characterization of a novel glutamine synthetase from Rhizobium leguminosarum. J.Biol.Chem. 268, 469-475.

    PubMed  CAS  Google Scholar 

  • Sibold L, Henriquet M, Possot O and Aubert J.-P 1991 Nucleotide sequence of nifH regions from Methanobacterium ivanovii and Methanosarcina barken 227 and characterization of glnB-like genes. Res.Microbiol. 142, 5–12.

    Article  PubMed  CAS  Google Scholar 

  • Somerville J E and Kahn D 1983 Cloning of the glutamine synthetase I gene from Rhizobium meliloti. J.Bacteriol. 156, 168–176.

    PubMed  CAS  Google Scholar 

  • Son H S and Rhee S G 1987 Cascade control of Escherichia coli glutamine synthetase. Purification and properties of Pn protein and nucleotide sequence of its structural gene. J.Biol.Chem. 262, 8609–8695.

    Google Scholar 

  • Stock J B, Ninfa A J and Stock A M 1989 Protein phosphorylation and regulation of adaptive responses in bacteria. Microbiol.Rev.53, 450–49.

    PubMed  CAS  Google Scholar 

  • Streeter J 1988 Inhibition of legume nodule formation and nitrogen fixation by nitrate. Crit.Rev.Plant.Sci. 7, 1–23.

    Article  CAS  Google Scholar 

  • Streicher S L, Bloom F R, Foor F, Levin M and Tyler B 1977 Klebsiella pneumoniae and Escherichia coli mutants altered in nitrogen assimilation. Fed.Proc. 34, 300(Abstract).

    Google Scholar 

  • Toukdarian A and Kennedy C 1986 Regulation of nitrogen metabolism in Azotobacter vinelandii: isolation of ntr and glnA genes and construction of ntr mutants. EMBO J.5, 399–407.

    PubMed  CAS  Google Scholar 

  • Van Heeswijk W, Kuppinger O, Merrick M and Kahn D 1992 Localization of the glnD gene on a revised map of the 200-kilobase region of the Escherichia coli chromosome. J.Bacteriol. 174, 1702–1703.

    PubMed  Google Scholar 

  • Van Heeswijk W C, Rabenberg M, Westerhoff H V and Kahn D 1993 Genes of the glutamine synthetase adenylylation cascade are not regulated by nitrogen in Escherichia coli. Mol.Microbiol. 9.

    Google Scholar 

  • Wang S P and Stacey G 1990 Ammonia regulation of nod genes in Bradyrhizobium japonicum Mol.Gen.Genet, 223, 329–331.

    CAS  Google Scholar 

  • Weiss V and Magasanik B 1988 Phosphorylation of NR1 of Ecoli. Proc.Natl.Acad.Sci.USA 85, 8919–8923.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

P. H. Graham M. J. Sadowsky C. P. Vance

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kennedy, C., Doetsch, N., Meletzus, D., Patriarca, E., Amar, M., Iaccarino, M. (1994). Ammonium sensing in nitrogen fixing bacteria: Functions of the glnB and glnD gene products. In: Graham, P.H., Sadowsky, M.J., Vance, C.P. (eds) Symbiotic Nitrogen Fixation. Developments in Plant and Soil Sciences, vol 57. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1088-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1088-4_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4475-2

  • Online ISBN: 978-94-011-1088-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics