Skip to main content

Host range, RFLP, and antigenic relationships between Rhizobium fredii strains and Rhizobium sp. NGR234

  • Chapter
  • 121 Accesses

Part of the book series: Developments in Plant and Soil Sciences ((DPSS,volume 57))

Abstract

Rhizobium fredii is a nitrogen-fixing symbiont from China that combines broad host range for nodulation of legume species with cultivar specificity for nodulation of soybean. We have compared 10 R. fredii strains with Rhizobium sp. NGR234, a well known broad host range strain from Papua New Guinea. NGR234 nodulated 16 of 18 tested lugume species, and nodules on 14 of the 16 fixed nitrogen. The R. fredii strains were not distinguishable from one another. They nodulated 13 of the legumes, and in only nine cases were nodules effective. All legumes nodulated by R. fredii were included within the host range of NGR234. Restriction fragment length polymorphisms (RFLPs) were detected with four DNA hybridization probes: the regulatory and common nod genes, nodDABC; the soybean cultivar specificity gene, nolC; the nitrogenase structural genes, nifKDH; and RFRS1, a repetitive sequence from R. fredii USDA257. A fifth locus, corresponding to a second set of soybean cultivar specificity genes, nolBTUVWX, was monomorphic. Using antisera against whole cells of three R. fredii strains and NGR234, we separated the 11 strains into four serogroups. The anti-NGR234 sera reacted with a single R. fredii strain, USDA191. Only one serogroup, which included USDA192, USDA201, USDA217, and USDA257, lacked cross reactivity with any of the others. Although genetic and phenotypic differences among R. fredii strains were as great as those between NGR234 and R. fredii, our results confirm that NGR234 has a distinctly wider host range than R. fredii.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

RFLP:

restriction fragment length polymorphism

TBS:

tris-buffered saline

YEM:

yeast extract-mannitol

References

  • Appelbaum ER, Chartrain N, Thompson D, Johansen K, O’Connell M and McLoughlin T 1985 Genes of Rhizobium japonicum involved in development of nodules. In Nitrogen Fixation Research Progress. Ed H J Evans and P H Bottomley. pp 101–107. Martinus Nijhoff, Dordrecht, Netherlands.

    Chapter  Google Scholar 

  • Appelbaum ER, Thompson DV, Idler K and Chartrain N 1988 Rhizobium japonicum USDA 191 has two nodD genes that differ in primary structure and function. J. Bacteriol. 170, 12–20.

    PubMed  CAS  Google Scholar 

  • Balatti PA and Pueppke SG 1992 Identification of North American soybean lines that form nitrogen-fixing nodules with Rhizobium fredii USDA257. Can. J. Plant Sci. 72, 49–55.

    Article  Google Scholar 

  • Brom S, de los Santos AG, Girard ML, Dávila G, Palacios R and Romero D 1991 High-frequency rearrangements in Rhizobium leguminosarum bv. phaseoli plasmids. J. Bacteriol. 173, 1344–1346.

    PubMed  CAS  Google Scholar 

  • Broughton WJ, Heycke N, Meyer H and Pankhurst CE 1984 Plasmid-linked nif and “nod” genes in fastgrowing rhizobia that nodulate Glycine max, Psophocarpus tetragonolobus ,and Vigna unguiculata. Proc. Natl. Acad. Sci. USA 81, 3093–3097.

    Article  PubMed  CAS  Google Scholar 

  • Burnett WN 1981 Western Blotting: electrophoretic transfer of proteins from SDS-polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal. Biochem. 112, 195–203.

    Article  Google Scholar 

  • Cannon FC, Riedel GE and Ausubel FM 1979 Overlapping sequences of Klebsiella pneumoniae nif DNA cloned and characterised. Mol. Gen. Genet. 174, 59–66.

    Article  PubMed  CAS  Google Scholar 

  • Chen WX, Yan GH and Li JL 1988 Numerical taxonomic study of fast-growing soybean rhizobia and a proposal that Rhizobium fredii be assigned to Sinorhizobium gen. nov. Int. J. Syst. Bacteriol. 28, 392–397.

    Article  Google Scholar 

  • Dénarié J, Debellé F and Rosenberg C 1992 Signalling and host range variation in nodulation. Annu Rev. Microbiol. 46,497–531.

    Article  PubMed  Google Scholar 

  • Devine TE 1985 Nodulation of soybean plant introduction lines with the fast-growing rhizobial strain USDA205. Crop Sci. 25, 354–356.

    Article  Google Scholar 

  • DuTeau NM, Palmer RG and Atherly AG 1986 Fastgrowing Rhizobium fredii are poor nitrogen-fixing symbionts of soybean. Crop Sci. 26, 884–889.

    Article  Google Scholar 

  • Egelhoff TT, Fisher RF, Jacobs TW, Mulligan JT and Long S R 1985 Nucleotide sequence of Rhizobium meliloti 1021 nodulation genes: nodD is read divergently from nodABC. DNA 4, 241–248.

    Article  PubMed  CAS  Google Scholar 

  • Hattori J and Johnson JA 1984 Fast-growing Rhizobium japonicum that effectively nodulates several commercial Glycine max L. Merrill cultivars. Appl. Environ. Microbiol. 48, 234–235.

    CAS  Google Scholar 

  • Heron DS and Pueppke SG 1984 Mode of infection, nodulation specificity, and indigenous plasmids of 11 fastgrowing Rhizobium japonicum strains. J. Bacteriol. 160, 1061–1066.

    PubMed  CAS  Google Scholar 

  • Heron DS and Pueppke SG 1987 Regulation of nodulation in the soybean-Rhizobium symbiosis. Strain and cultivar variability. Plant Physiol. 84, 1391–1396.

    CAS  Google Scholar 

  • Heron DS, Érsek T, Krishnan HB and Pueppke SG 1989 Nodulation mutants of Rhizobium fredii USDA257. Mol. Plant-Microbe Interact. 2, 4–10.

    Article  Google Scholar 

  • Israel DW, Mathis JN, Barbour WM and Elkan GH 1986 Symbiotic effectiveness and host-strain interactions of Rhizobium fredii USDA191 on different soybean cultivars. Appl. Environ. Microbiol. 51, 898–903.

    PubMed  CAS  Google Scholar 

  • Jansen van Rensburg H, Strijdom BW and Otto CJ 1983 Effective nodulation of soybeans by fast-growing strains of Rhizobium japonicum. S. Afr. J. Sci. 79, 251–252.

    Google Scholar 

  • Jarvis BDW, Downer HL and Young JPW 1992 Phylogeny of fast-growing soybean-nodulating rhizobia supports synonymy of Sinorhizobium and Rhizobium and assignment to Rhizobium fredii. Int. J. Syst. Bacteriol. 42, 93–96.

    Article  PubMed  CAS  Google Scholar 

  • Jordan DC 1984 Family III. Rhizobiaceae Conn 1938. In Bergey’s Manual of Determinative Bacteriology, Vol. 1. Ed. N R Krieg et al. pp 234–256. Williams and Wilkins, Baltimore.

    Google Scholar 

  • Keyser HH and Cregan PB 1984 Interactions of selected Glycine soja Sieb. & Zucc. genotypes with fast-and slowgrowing soybean rhizobia. Crop Sci. 24, 1059–1062.

    Article  Google Scholar 

  • Keyser HH and Griffin RH 1987 Beltsville Rhizobium Culture Collection Catalogue. U.S. Dept. of Agriculture, Beltsville.

    Google Scholar 

  • Keyser HH, Bohlool BB, Hu TS and Weber DF 1982 Fastgrowing rhizobia isolated from root nodules of soybean. Science 215, 1631–1632.

    Article  PubMed  CAS  Google Scholar 

  • Kirchner O 1895 Die Wurzelknöllchen der Sojabohne. Beitr. Biol. Pflanzen 7, 213–223.

    Google Scholar 

  • Krishnan HB and Pueppke SG 1991a nolC ,a Rhizobium fredii gene involved in cultivar-specific nodulation of soybean, shares homology with a heat-shock gene. Mol. Microbiol. 5, 737–745.

    Article  PubMed  CAS  Google Scholar 

  • Krishnan HB and Pueppke SG 1991b Repetitive sequences with homology to Brady rhizobium japonicum DNA and the T-DNA of Agrobacterium rhizogenes are closely linked to nodABC of Rhizobium fredii USDA257. Mol. Plant-Microbe Interact. 4, 521–529.

    Article  PubMed  CAS  Google Scholar 

  • Krishnan HB and Pueppke SG 1991c Sequence and analysis of the nodABC region of Rhizobium fredii USDA257, a nitrogen-fixing symbiont of soybean and other legumes. Mol. Plant-Microbe Interact. 4, 512–520.

    Article  PubMed  CAS  Google Scholar 

  • Krishnan HB and Pueppke SG 1993 Characterization of RFRS9, a second member of the Rhizobium fredii repetitive sequence family from the nitrogen fixing symbiont R. fredii USDA257. Appl. Environ. Microbiol. 59, 150–155.

    PubMed  CAS  Google Scholar 

  • Kuykendall LD, Saxena B, Devine TE and Udell SE 1992 Genetic diversity in Bradyrhizobiwn japonicum Jordan 1982 and a proposal for Bradyrhizobiwn elkanii sp. nov. Can. J. Microbiol. 38, 501–505.

    Article  CAS  Google Scholar 

  • Lewin A, Rosenberg C, Meyer H, Wong CH, Nelson L, Manen J-F, Stanley J, Dowling D N, Dénarie J and Broughton W J 1987 Multiple host-specificity loci of the broad host-range Rhizobium sp. NGR234, selected using the widely compatible legume Vigna unguiculata. Plant Molec. Biol. 8, 447–459.

    Article  CAS  Google Scholar 

  • Martinez E, Romero D and Palacios R 1990 The Rhizobium genome. CRC Crit. Rev. Plant Sci. 9, 59–93.

    Article  CAS  Google Scholar 

  • Meinhardt L W, Krishnan H B, Balatti P A and Pueppke S G 1993 Molecular cloning and characterization of sym plasmid locus that regulates cultivar-specific nodulation of soybean by Rhizobium fredii USDA257. Mol. Microbiol. 7, 17–29.

    Article  Google Scholar 

  • Morrison N A, Trinick M J and Rolfe B G 1986 Comparison of the host range of fast-growing R. japonicum strains with a fast-growing isolate from lablab. Plant and Soil 92, 313–317.

    Article  Google Scholar 

  • Otten L, Canaday J, Gérard J-C, Fournier P, Crouzet P and Paulus F 1992 Evolution of agrobacteria and their Ti plasmids-a review. Mol. Plant-Microbe Interact. 4, 279–287.

    Article  Google Scholar 

  • Perret X, Broughton W J and Brenner S 1991 Canonical ordered cosmid library of the symbiotic plasmid of Rhi zobium species NGR234. Proc. Natl. Acad. Sci USA 88, 1923–1927.

    Article  PubMed  CAS  Google Scholar 

  • Rastogi V K, Bromfield E S P, Whitwill S T and Barran L R 1992. A cryptic plasmid of indigenous Rhizobium meliloti possesses reiterated nodC and nifE genes and undergoes DNA rearrangement. Can J. Microbiol. 38, 563–568.

    Article  CAS  Google Scholar 

  • Rodriguez-Quinones F, Banfalvi Z, Murphy P and Kondorosi A 1987 Interspecies homology of nodulation genes in Rhizobium. Plant Molec. Biol. 8, 61–75.

    Article  CAS  Google Scholar 

  • Romero D, Brom S, Martinez-Salazar J, de Lourdes Girard M, Palacios R and Dávila G 1991 Amplification and deletion of a nod-nif region in the symbiotic plasmid of Rhi zobium phaseoli. J. Bacteriol. 173, 2435–2441.

    PubMed  CAS  Google Scholar 

  • Sadowsky M J, Bohlool B B and Keyser H H 1987 Serological relatedness of Rhizobium fredii to other rhizobia and to bradyrhizobia. Appl. Environ. Microbiol. 53, 1785–1789.

    PubMed  CAS  Google Scholar 

  • Scholia M H and Elkan G H 1984 Rhizobium fredii sp. nov., a fast-growing species that effectively nodulates soybean. Int. J. Syst. Bacteriol. 34, 484–486.

    Article  Google Scholar 

  • Scholia M H, Moorefield J A and Elkan G H 1984 Deoxyribonucleic acid homology between fast-growing soybeannodulating bacteria and other rhizobia. Int. J. Syst. Bacteriol. 34, 283–286.

    Article  Google Scholar 

  • Stanley J and Cervantes E 1991 Biology and genetics of the broad host range Rhizobium sp. NGR234. J. Appl. Bacteriol. 70,9–19.

    Article  Google Scholar 

  • Stowers M D and Eaglesham A R J 1984 Physiological and symbiotic characteristics of fast-growing Rhizobium japonicum. Plant and Soil 77, 3–14.

    Article  Google Scholar 

  • Trinick M J 1980 Relationships amongst the fast-growing rhizobia of Lablab purpureus, Leucaena leucocephala ,Mimosa spp., Acacia farnesiana and Sesbania grandiflora and their affinities with other rhizobial groups. J. Appl. Bacteriol. 49, 39–53.

    Article  Google Scholar 

  • Vincent J M 1970 A Manual for the Practical Study of Root-nodule Bacteria. Blackwell Scientific Publications, Oxford.

    Google Scholar 

  • Yanagi M and Yamasato K 1993 Phylogenetic analysis of the family Rhizobiaceae and related bacteria by sequencing of 16S rRNA gene using PCR and DNA sequencer. FEMS Microbiol. Lett. 107,115–120.

    Article  PubMed  CAS  Google Scholar 

  • Zdor R E and Pueppke S G 1991 Nodulation competitiveness of Tn5-induced mutants of Rhizobium fredii USDA208 that are altered in motility and extracellular polysaccharide production. Can. J. Microbiol. 37, 52–58.

    Article  CAS  Google Scholar 

  • Zhang X, Harper R, Karsisto M and Lindström K 1991 Diversity of Rhizobium bacteria isolated from the root nodules of leguminous trees. Int. J. Syst. Bacteriol. 41, 104–113.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

P. H. Graham M. J. Sadowsky C. P. Vance

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Krishnan, H.B., Pueppke, S.G. (1994). Host range, RFLP, and antigenic relationships between Rhizobium fredii strains and Rhizobium sp. NGR234. In: Graham, P.H., Sadowsky, M.J., Vance, C.P. (eds) Symbiotic Nitrogen Fixation. Developments in Plant and Soil Sciences, vol 57. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1088-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1088-4_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4475-2

  • Online ISBN: 978-94-011-1088-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics