Skip to main content

Superconductivity in Nanophase Materials

  • Chapter
Nanophase Materials

Part of the book series: NATO ASI Series ((NSSE,volume 260))

  • 436 Accesses

Abstract

Nanophase materials composed from metal clusters embedded in an insulating (semiconducting) matrix nowadays can be prepared with a well-defined metal-cluster size independent of the metal volume fraction. The influence of metal volume fraction and metal-cluster size on the superconducting properties (critical current j c , critical magnetic field H c2, superconducting transition temperature T c ) is discussed. A new effect (sharp resistance anomaly near T c ) showing up in some nanophase materials and a model to explain this effect is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Giaever, I. and Zeller, H.R. (1968), ’Superconductivity of small tin particles measured by tunneling’, Phys. Rev. Lett. 20, 1504–1507.

    Article  ADS  Google Scholar 

  2. Zeller, H.R. and Giaever, I. (1969), ’Tunneling, zero-bias anomalies, and small superconductors’, Phys. Rev. 181, 789–799.

    Article  ADS  Google Scholar 

  3. Abeles, B. (1976), ’Granular metal films’, Appl. Solide State Science 6, 1–117.

    Google Scholar 

  4. Abeles, B., Sheng, P., Coutts, M.D., and Arie, Y. (1975), ’Structural and electrical properties of granular metal films’, Adv. Phys. 24, 407–461.

    Article  ADS  Google Scholar 

  5. Weitzel, B., Schreyer, A., and Micklitz, H. (1990), ’Metal-insulator transition and superconductivity in Bi/Kr composites built from well-defined Bi-clusters’, Europhys. Lett. 12, 123–128.

    Article  ADS  Google Scholar 

  6. Rubin, S., Schimpfke, T., Weitzel, B., Voßloh, C., and Micklitz, H. (1992) ’Observation of sharp resistance anomalies near Tc in granular superconductors’, Ann. Physik 1, 492–499.

    Article  ADS  Google Scholar 

  7. e.g.: Stauffer, D. (1985), Introduction to percolation theory, Taylor and Francis London

    Book  MATH  Google Scholar 

  8. Deutscher, G. and Rappaport, M. (1979), ’Critical currents of superconducting aluminium -germanium and lead - germanium thin film alloys near the metal - insulator transition’, J. de Physique Lett. 40, L-219–221

    Article  Google Scholar 

  9. Alexander, S. (1983), ’Superconductivity of networks. A percolation approach to the effects of disorder’, Phys. Rev. B 27, 1541–1557.

    Article  MathSciNet  ADS  Google Scholar 

  10. Gerber, A. and Deutscher, G. (1987), ’Superconducting properties of In-Ge mixture films’, Phys. Rev. B, 3214–3218.

    Google Scholar 

  11. Ginzburg, V.L. (1964), ’On surface superconductivity’, Phys. Lett. 13, 101–102.

    ADS  Google Scholar 

  12. Strongin, M., Kammerer, O.F., Crow, J.E., Parks, R.D., Douglass, D.H., and Jensen, M.A. (1968), ’Enhanced superconductivity in layered metallic films’, Phys. Rev. Lett. 21, 1320–1323.

    Article  ADS  Google Scholar 

  13. Fontaine, A. and Meunier, F. (1972), ’Normal and superconducting properties of metallic grains (Al) embedded in a semiconductor (Ge): Experimental evidence for an additional attractive mechanism between electrons’, Phys. Kondens. Materie 14, 119–137.

    Article  ADS  Google Scholar 

  14. McMillan, W.L. (1968), ’Transition temperature of strong-coupled superconductors’, Phys. Rev. 167, 331–344.

    Article  ADS  Google Scholar 

  15. Yokozeki, A. and Stein, G.D. (1978), ’A metal cluster generator for gas-phase electron diffraction and its application to bismuth, lead, and indium: Variation in microcrystal structure with size’, J. Appl. Phys. 49, 2224–2232.

    Article  ADS  Google Scholar 

  16. Buckel, W. and Hilsch, R. (1954) ’Einfluß der Kondensation bei tiefen Temperaturen auf den elektrischen Widerstand und die Supraleitung für verschiedene Metalle’, Z. Phys. 138, 109–120.

    Article  ADS  Google Scholar 

  17. Wittig, J (1966), ’Die Supraleitung von Zinn und Blei unter sehr hohem Druck’, Z. Phys. 195, 228–238.

    Article  ADS  Google Scholar 

  18. Modera, J.S. and Meservey, R. (1990), ’Superconducting phases of Bi and Ga induced by deposition on a Ni sublayer’, Phys. Rev. B 42, 179–183.

    Article  ADS  Google Scholar 

  19. Weitzel, B. and Micklitz, H. (1991), ’Superconductivity in granular systems built from well-defined rhombohedral Bi clusters: Evidence for Bi-surface superconductivity’, Phys. Rev. Lett. 66, 385–388.

    Article  ADS  Google Scholar 

  20. Jezequel, G., Petroff, Y., Pinchaux, R., and Yndurain, F. (1986), ’Electronic structure of the Bi(111) surface’, Phys. Rev. B, 4352–4355.

    Google Scholar 

  21. Schneider, W. and Micklitz, H., to be published.

    Google Scholar 

  22. Santhanam, P., Chi, C.C., Wind, S.J., Brady, M.J., Buchigano, J.J. (1991), ’Resistance anomaly near the superconducting transition temperature in short aluminum wires’, Phys. Rev. Lett. 66, 2254–2257.

    Article  ADS  Google Scholar 

  23. Moshchalkov, V.V., Vloeberghs, H., Dhallé, M., Neuttiens, G., Van Haesendonck, C., Jonck-heere, R., and Bruynseraede, Y. (1992) ’Anomalous Little-Parks oscillations and field enhanced superconductivity in mesoscopic loops’, Invited talk presented at the 12th General Conference of the Condensed Matter Division of the E.P.S., Prague.

    Google Scholar 

  24. Lindqvist, P., Nordström, A., and Rapp, Ö. (1990) ’New resistance anomaly in the superconducting fluctuation region of disordered Cu-Zr alloys with dilute magnetic impurities’, Phys. Rev. Lett. 64, 2941–2944.

    Article  ADS  Google Scholar 

  25. Fabrega, L., Crusellas, M.A., Fontcuberta, J., Obradors, X., Pinol, S., van der Beek, C.J., Kes, P.H., Grenet, T., and Beille, J. (1991) ’Upper critical field anisotropy and dissipative flux motion in Nd-Ce-Cu-O single crystals’, Physica C 185–189, 1913–1914.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Micklitz, H., Rubin, S. (1994). Superconductivity in Nanophase Materials. In: Hadjipanayis, G.C., Siegel, R.W. (eds) Nanophase Materials. NATO ASI Series, vol 260. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1076-1_44

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1076-1_44

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4469-1

  • Online ISBN: 978-94-011-1076-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics