Skip to main content

Melting in Restricted Geometries

  • Chapter
Nanophase Materials

Part of the book series: NATO ASI Series ((NSSE,volume 260))

  • 432 Accesses

Abstract

We discuss the melting and structure of clusters and thin films using Monte Carlo simulation and analytic density functional methods. The density is increased at the bounadry but the local structure factor is not. The structure can be semi-quantitatively described by a linear theory. We found that the freezing temperature is increased for thin films whereas for clusters it is decreased. For spherical boundaries, at melting the Debye-Waller factor as a function of the radial distance consists of a flat bulk-hke part close to the center and a decaying interface part at the surface. For small particles, the surface part dominates. This represents a type of generallzed Lindemann criterion for small clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. T. Chui, Phys. Rev. B 28, 178 (1983);

    Article  ADS  Google Scholar 

  2. D. Nelson and B. I. Halperin, Phys. Rev. B 19, 2457 (1979).

    Article  ADS  Google Scholar 

  3. A. P. Young, Phys. Rev. B. 19, 1855 (1979).

    Article  ADS  Google Scholar 

  4. Murray and Van Winkle, PRL 58,1200 (1987); Murray, Sprenger and Wenk PRB 42 (1990).

    Article  ADS  Google Scholar 

  5. Y. Lereah et. al., Europhysics Lett. 12, 709 (1990)

    Article  ADS  Google Scholar 

  6. S. T. Chui, Phys. Rev.B 43, 11523 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  7. S. T. Chui, Phys. Rev.B 43, 10654 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  8. S. T. Chui, Phys. Rev.B 46, 4233 (1992).

    Article  ADS  Google Scholar 

  9. K. Unruh, B. M. Patterson, S. I. Shah, G. A. Jones, Y. W. Kim and J. E. Greene, MRS symposium proceedings Vol. 132 p.225 (1989).

    Article  Google Scholar 

  10. P. Sheng, R. W. Cohen and J. R. Schrieffer, J. Phys. C 14, L565 (1981)

    Article  ADS  Google Scholar 

  11. J. G. Kirkwood and E. Monroe, J. Chem. Phys. 9, 514 (1941)

    Article  ADS  Google Scholar 

  12. T. V. Ramakrishnan and M. Yussouff, Phys. Rev. B19, 2775 (1958). This type of approaches is called the density functional method because the potential is related to the change in density as a kind of functional derivative.

    Article  ADS  Google Scholar 

  13. Pierre Labastie and Robert L. Whetten, Phys. Rev. Lett. 65, 1567 (1990).

    Article  ADS  Google Scholar 

  14. D. Henderson, F. F. Abraham, and J. A. Barker, Mol. Phys. 31, 1291 (1976)

    Article  ADS  Google Scholar 

  15. W. F. Samm and C. Ebner, Phys. Rev. A 17 1768 (1978)

    Article  ADS  Google Scholar 

  16. A. J. M. Yang, P. D. Fleming III, and J. H. Gibbs, J. Chem. Phys. 64, 3732 (1976).

    Article  ADS  Google Scholar 

  17. S. Toxvaerd, J. Chem. Phys. 74, 1998 (1981)

    Article  ADS  Google Scholar 

  18. J. Q. Broughton, A.

    Google Scholar 

  19. G. Devaud and R. H. Willens Phys. Rev. Lett. 57 2683 (1986)

    Article  ADS  Google Scholar 

  20. W. Scvenhans, J.-P. Locquet, Y. Bruynseraede, H. Homma and I. K. Schuller, Phys. Rev. B38, 4974 (1988).

    Article  ADS  Google Scholar 

  21. Bonissent and F. F. Abraham, J. Chem. Phys. 74, 4029 (1981)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Chui, S.T. (1994). Melting in Restricted Geometries. In: Hadjipanayis, G.C., Siegel, R.W. (eds) Nanophase Materials. NATO ASI Series, vol 260. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1076-1_39

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1076-1_39

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4469-1

  • Online ISBN: 978-94-011-1076-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics