Skip to main content

Preparation of γ-Fe2O3 Particles

  • Chapter
Nanophase Materials

Part of the book series: NATO ASI Series ((NSSE,volume 260))

Abstract

Various pathways to obtain γ-Fe2O3 nanoparticles by oxidizing colloidal magnetite are reported, with focus on resulting variations in surface structural features. Some outstanding surface properties of γ-Fe2O3 are pointed out. With a few examples it is shown how surface phenomena can enable to tailor the material for a wide range of utilizations.

γ-Fe2O3 (maghemite) is a cation deficient ferrimagnetic spinel, technologically interesting mainly because of its magnetic properties. These properties, for a nanophase material, are strongly dependent not only on the particle size, but also on magnetic interactions between the particles. The state of dispersion is therefore a major parameter to be controlled. The particle ability to disperse is closely related to the particular structure of the surface. γ-Fe2O3 nanoparticles are easily obtained by oxidizing colloidal magnetite [1–5]. Oxidation can be achieved, roughly speaking, by “addition of oxygen” or “removal of iron”. Both types of processes lead to the same structural features within the particle, but not at the surface. This can be used to enhance phenomena that take place at the interface solid/solution and enable to adapt the material for a wide range of utilizations, as shown below.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Topsoe H., Dumesic J.A. and Boudart M. (1974) Mössbauer spectra of stoichiometric and nonstoichiometric Fe3O4 microcrystals, J. Physique 35, C6 411–413.

    Article  Google Scholar 

  2. Haneda K. and Morrish A.H. (1977) ‘Magnetite to maghemite transformation in ultrafine particles’, J. Physique 38, C1 321–323.

    Article  Google Scholar 

  3. Gillot B., Rousset, A. and Dupré G. (1978) ‘Influence of crystallite size on the oxidation kinetics of magnetite’, J. Solid St. Chem. 25, 263–271.

    Article  ADS  Google Scholar 

  4. Jolivet J.P. and Tronc E., (1988) ‘Interfacial electron transfer in colloidal spinel iron oxide. Conversion Fe3O4-γ-Fe2O3 in aqueous medium’, J. Colloid Interface Sci. 125, 688–701.

    Article  Google Scholar 

  5. Jolivet J.P., Tronc E., Barbe C. and Livage J., (1990) ‘Interfacial electron transfer in colloidal spinel iron oxide. Silver ion reduction in aqueous medium’ J. Colloid Interface Sci. 138, 465–472.

    Article  Google Scholar 

  6. Gleitzer C. and Goodenough J.B. (1985) ‘Mixed-valence iron oxides’, in Structure and Bonding, Springer-Verlag, Berlin, 61, pp. 1–76.

    Google Scholar 

  7. Haneda K. and Morrish A.H. (1977) ‘Vacancy ordering in γ-Fe2O3 small particles’, Solid State Comm. 22, 779–782.

    Article  ADS  Google Scholar 

  8. Eggleton R.A. and Fitzpatrick R.W. (1988) ‘New data and a revised structural model for ferrihydrite’, Clays Clay Miner. 36, 111–124.

    Article  ADS  Google Scholar 

  9. Schwertmann U. and Murad E.., (1983) ‘Effect of pH on the formation of goethite and hematite from ferrihydrite’, Clays Clay Miner. 31, 277–284.

    Article  ADS  Google Scholar 

  10. Tronc E., Belleville P., Jolivet J.P., and Livage J., (1992) ‘Transformation of ferric hydroxide into spinel by FeII adsorption’, Langmuir 8, 313–319.

    Article  Google Scholar 

  11. Jolivet J.P., Belleville P., Tronc E. and Livage J., (1992) ‘Influence of Fe(II) on the formation of spinel iron oxide in alkaline medium’, Clays Clay Miner. 40, 531–539.

    Article  ADS  Google Scholar 

  12. Jolivet J.P. and Tronc E. ‘Formation of magnetic spinel iron oxide in solution’ in this book.

    Google Scholar 

  13. Sidhu P.S., Gilkes R.J. and Postner A.M., (1977) ‘Mechanism of the low temperature oxidation of synthetic magnetites’, J. Inorg. Nucl. Chem. 39, 1953–1958.

    Article  Google Scholar 

  14. Belleville P., Jolivet J.P., Tronc E. and Livage J. (1992) ‘Crystallization of ferric hydroxide into spinel by adsorption on colloidal magnetite’, J. Colloid Interface Sci. 150, 453–460.

    Article  Google Scholar 

  15. Jolivet J.P, Massart R. and Fruchart J.M., (1983) ‘Synthèse et étude physicochimique de colloides magnetiques non surfactés en milieu aqueux’, Nouv. J. Chim. 7, 325–331.

    Google Scholar 

  16. Prené P., Tronc E., Jolivet J.P., Livage J., Cherkaoui R., Noguès M., Dormann J.L. and Fiorani D. (1993) ‘Magnetic properties of isolated γ-Fe2O3 particles’, IEEE Trans. Magn. (in press).

    Google Scholar 

  17. Cohen Stuart M.A., Fleer G.J., Lyklema J. and Worde W. (1991) ‘Adsorption of ions, polyelectrolytes and proteins’, Adv. Colloid Interface Sci. 34, 477–535.

    Article  Google Scholar 

  18. Lyklema J., Fleer G.J. (1987) ‘Electrical contributions to the effect of macromolecules on colloid stability’, Colloids Surf. 25, 357–368.

    Article  Google Scholar 

  19. Meguro K., Yabe T., Ishioka S., Kato K. and Esumi K. (1986) ‘Polymerization of styrene adsolubilized in surfactant adsorbed bilayer on pigments’, Bull. Chem. Soc. Jpn. 59,3019– 3021.

    Article  Google Scholar 

  20. Hasegawa M., Arai K. and Saito S. (1987) ‘Effect of surfactant adsorbed on encapsulation of fine inorganic powder with soapless emulsion polymerization’, J. Polymer Sci. A25, 3231– 3239.

    Google Scholar 

  21. Tronc E. and Jolivet J.P., (1986) ‘Surface effects on magneticallv-coupled γ-Fe2O3 colloids’, Hyp. Int. 28, 525–528.

    Article  ADS  Google Scholar 

  22. Tronc E., Jolivet J.P. and Livage J. (1990) ‘Mössbauer investigation of the γ → α-Fe2O3 transformation in small particles’, Hyp. Int. 54, 737–740.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Tronc, E., Jolivet, J.P. (1994). Preparation of γ-Fe2O3 Particles. In: Hadjipanayis, G.C., Siegel, R.W. (eds) Nanophase Materials. NATO ASI Series, vol 260. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1076-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1076-1_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4469-1

  • Online ISBN: 978-94-011-1076-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics