Skip to main content

Part of the book series: Water Science and Technology Library ((WSTL,volume 10/4))

  • 355 Accesses

Abstract

A storage process with a finite storage capacity M and a random uncorrelated net input which varies over a finite range is modeled as a random walk over a finite interval with “sticky” boundaries. The stochastic equation for the distribution of the storage level x is studied in the stationary limit.

Research in part by the Israel Ministry of Sciences and technology

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ali Khan, M. S. (1970) “Finite Dams with Inputs Forming a Markov Chain”, J. Appl. Prob., 7, 291.

    Article  Google Scholar 

  • Attia, F. A. and Brockwell, P. J. (1982) “The Control of a Finite Dam”, J. Appl. Prob., 19, 815.

    Article  Google Scholar 

  • Chandrasekhar, S. (1943) “Stochastic Problems in Physics and Astronomy”, Rev. Mod. Phys., 15, 1.

    Article  Google Scholar 

  • Cox, D. R. and Miller, H. D. (1984)) The Theory of Stochastic Processes, pp. 48–50 (Chapman and Hall, Ltd., London).

    Google Scholar 

  • Fox, D., Zarmi, Y. and Zoglin, P. (1985) “Stochastic Model for the Long-Term Behavior of Battery Storage in Photovoltaic Systems, Proc. ISES Cong. “INTERSOL 85”, Montreal (Pergamon Press, New York).

    Google Scholar 

  • Fox, D. and Zarmi, Y. (1992) “ Stochastic Analysis of Finite Storage Process: Input with Finite Support” (Report, to be submitted for publication).

    Google Scholar 

  • Harrison, J. M. (1985) Brownian Motion and Stochastic Flow Systems (John Wiley & Sons, New York).

    Google Scholar 

  • Harrison, J. M. and Lemoine, A. J. (1981) “Sticky Boundary Motion as the Limit of Storage Processes”-J. Appl. Prob., 18, 216.

    Article  Google Scholar 

  • Karlin, S. and Taylor, H. M, (1981) A Second Course in Stochastic Processes, p. 287 (Academic Press, New York).

    Google Scholar 

  • Klemes, V. (1981) “Applied Stochastic Theory of Storage in Evolution”, Adv. Hydrosci., 12, 79.

    Google Scholar 

  • Knessl, C., Matkowsky, B. J., Schuss, Z, and Tier, C. (1985) “An Asymptotic Theory of Large Deviations for Markov Jump Processes, SIAM J. Appl. Math., 45, 1006.

    Article  Google Scholar 

  • Knessl, C., Matkowsky, B. J., Schuss Z., and Tier, C. (1986) “Asymptotic Analysis of a State Dependent M/G/1 Queuing System, SIAM J. Appl. Math., 46, 483.

    Article  Google Scholar 

  • Knessl, C., Matkowsky, B. J., Schuss, Z, and Tier, C. (1987) “The Two Repairmen Problem: A Finite Source M/G/2 Queue, SIAM J. Appl. Math., 47, 367.

    Google Scholar 

  • Lloyd, E. H. (1976) “Stochastic Reservoir Theory”, Adv. Hydrosci., 4, 281.

    Google Scholar 

  • Moran, P. A. P. (1956) “A Probability Theory of a Dam with a Continuous Release”, Quart. J. Math. Oxford, 7, 130.

    Article  Google Scholar 

  • Moran, P. A. P. (1959) The Theory of Storage (John Wiley & Sons, New York).

    Google Scholar 

  • Moran, P. A. P. (1969) “A Theory of Dams with Continuous input and a General Release Rule”, J. Appl. Prob., 6, 88.

    Article  Google Scholar 

  • Osawa, H. (1985) “Reversibility of Markov Chains with Applications to Storage Models”, J. Appl. Prob., 22, 123.

    Article  Google Scholar 

  • Prabhu, N. U. (1985) Stochastic Storage Processes (Springer Verlag, New York).

    Google Scholar 

  • Ramakrishnan, A. (1953) “Stochastic Processes Associated with Random Division of a Line”, Cambridge Phil. Soc., 49, 473.

    Article  Google Scholar 

  • Roes, P. B. M. (1970) “The Finite Dam”, J. Appl. Prob., 7, 316; 616.

    Article  Google Scholar 

  • Srinivasan, S. E. (1974) “Analytic Solution of a Finite Dam Governed by a General Input”, J. Appl. Prob., 11, 134.

    Article  Google Scholar 

  • Woolford, S. W. (1983) “On a Generalized Finite Capacity Storage Model”, J. Appl. Prob., 20, 663.

    Article  Google Scholar 

  • Yeh, L. and Hua, L. J. (1987) “Optimal Control of a Finite Dam: Wiener Process Input”, J. Appl. Prob., 24, 186.

    Article  Google Scholar 

  • Ykowitz, S. (1982) “Dynamic Programming Applications in Water Resources”, Water Resources Res., 18, 673.

    Article  Google Scholar 

  • Zuckerman, D. (1977) “Two-Stage Output Procedure for a Finite Dam”, J. Appl. Prob., 14, 421.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Fox, D., Zarmi, Y., Zemel, A. (1994). Stochastic Model of Finite Storage Processes: Input with Finite Support. In: Hipel, K.W. (eds) Stochastic and Statistical Methods in Hydrology and Environmental Engineering. Water Science and Technology Library, vol 10/4. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1072-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1072-3_20

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4467-7

  • Online ISBN: 978-94-011-1072-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics