Patterns of Aperiodic Pulsation



Techniques for deriving amplitude equations for stellar pulsation are outlined. For the simplest such equations with multiple instabilities, the derivation of a map for the patterns of pulsation phases is described. This map gives the time between two successive maxima of pulsation in terms of the time between the previous pair, under suitable conditions. The phase differences can be regular, chaotic or hyperchaotic.


Oscillatory Mode Homoclinic Orbit Slow Mode Amplitude Equation Dimensional Phase Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arneodo, A., Coullet P. H. and Spiegel, E. A.: 1982, “Chaos in a Finite Macroscopic System,” Phys. Lett. A92, 368.MathSciNetADSGoogle Scholar
  2. Arneodo, A., Coullet P.H., Spiegel, E. A. and Tresser, C.: 1985a, “Asymptotic Chaos,” Physica D14, 327.MathSciNetADSGoogle Scholar
  3. Arneodo, A., Coullet P. H. and Spiegel, E. A.: 1985b, “The Dynamics of Triple Convection,” Geophys. and Astrophys. Fluid Dynamics 31, 1.ADSzbMATHCrossRefGoogle Scholar
  4. Baker, N. H.: 1966, “Simplified models for Cepheid instability,” in Stellar Evolution, eds. R. F. Stein and A. G. W. Cameron (Plenum Press) 333–346.Google Scholar
  5. Baker, N. H., Moore, D. W. and Spiegel, E. A.: 1966, “Nonlinear Oscillations in the One-Zone Model for Stellar Pulsation,” Astronomical Journal 71, 845.Google Scholar
  6. Baker, N. H., Moore, D. W. and Spiegel, E. A.: 1971, “Aperiodic Behavior of a Non-Linear Oscillator,” Quart. Jour. Mech. Appl. Math. 24, 391.ADSzbMATHCrossRefGoogle Scholar
  7. Carr, J.: 1981, Applications of Centre Manifold Theory. (Springer-Verlag).Google Scholar
  8. Chandrasekhar, S.: 1961, Hydrodynamic and Hydromagnetic Stability, (Oxford Univ. Press).Google Scholar
  9. Coullet, P. H. and Elphick, C.: 1987, “Topological defect dynamics and Melniknov’s theory,” Phys. Lett. A121, 233.MathSciNetADSGoogle Scholar
  10. Coullet, P. H. and Spiegel, E. A.: 1981, “A Tale of Two Methods,” in Summer Study Program in Geophysical Fluid Dynamics, The Woods Holes Oceanographic Institution, ed. F. K. Mellor, p. 276.Google Scholar
  11. Coullet, P. H. and Spiegel, E. A.: 1983, “Amplitude Equations for Systems With Competing Instabilities,” SLAM J. Appl. Math. 43, 774.MathSciNetCrossRefGoogle Scholar
  12. Elphick C., Meron, E. and Spiegel, E. A.: 1990a, “Patterns of Propagating Pulses,” SLAM J. Appl. Math. 50, 490.MathSciNetzbMATHCrossRefGoogle Scholar
  13. Elphick, C., Meron, E., Rinzel, J. and Spiegel, E. A.: 1990b, “Impulse patterning and relaxational propagation in excitable media,” J. Theor. Biol. 146, 249.CrossRefGoogle Scholar
  14. Elphick, C., Regev, O., Ierley, G. R. and Spiegel, E. A.: 1991, “Interacting Localized Structures with Galilean Invariance,” Physical Review A: General Physics A44, 1110.ADSCrossRefGoogle Scholar
  15. Glendinning, P. and Tresser, C.: 1985, “Heteroclinic loops leading to hyperchaos,” Phys. Lett. A46, 347.Google Scholar
  16. Gilmore, R.: 1981, Catastrophe Theory for Scientists and Engineers, (Wiley and Sons, New York).zbMATHGoogle Scholar
  17. Moore, D. W. and Spiegel, E. A.: 1966, “A Thermally Excited Nonlinear Oscillator,” Astrophysical Journal 143, 871.MathSciNetADSCrossRefGoogle Scholar
  18. Spiegel, E. A.: 1972, “Convection in Stars. II. Special Effects,” Annual Review of Astronomy and Astrophysics 10, 261.ADSCrossRefGoogle Scholar
  19. Spiegel, E.A.: 1985, “Cosmic Arrhythmias,” in Chaotic Behavior in Astrophysics, eds. R. Buchler, J. Perdang and E. A. Spiegel (Reidel, Dordrecht), p. 91.CrossRefGoogle Scholar
  20. Tresser, C.: 1984, “Homoclinic orbits for flows in R3,” J. Physique 45, 837.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1993

Authors and Affiliations

  1. 1.Astronomy DepartmentColumbia UniversityNew YorkUSA

Personalised recommendations