Advertisement

Basic Principles of Gravitational Wave Interferometers

  • Peter R. Saulson
Chapter
Part of the NATO ASI Series book series (ASIC, volume 427)

Abstract

Modern interferometric gravitational wave detectors can trace their heritage to the Michelson-Morley experiment. In this lecture, I discuss the way such instruments elucidate the nature of space-time, and derive the fundamental limit to their sensitivity.

Keywords

Gravitational Wave Beam Splitter Output Port Shot Noise Michelson Interferometer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation (W. H. Freeman, San Francisco, 1973).Google Scholar
  2. [2]
    A. A. Michelson and E. W. Morley, Am. J. Sci. 34(1887) 333.Google Scholar
  3. [3]
    H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, Englewood Cliffs, New Jersey, 1984).Google Scholar
  4. [4]
    M. E. Gertsenshtein and V. I. Pustovoit, Sov. Phys. JETP 16 (1962) 433.MathSciNetADSGoogle Scholar
  5. [5]
    G. E. Moss, L. R. Miller, and R. L. Forward, Appl. Opt. 10 (1971) 2495ADSCrossRefGoogle Scholar
  6. [5a]
    R. L. Forward, Phys. Rev. D17 (1978) 379.ADSGoogle Scholar
  7. [6]
    R. Weiss, Prog. Rep. MIT Research Lab of Electronics 105 (1972) 54.Google Scholar
  8. [7]
    B. F. Schutz and M. Tinto, M.N.R.A.S. 224 (1987) 131.ADSGoogle Scholar
  9. [8]
    S. P. Boughn, private communication.Google Scholar
  10. [9]
    K. S. Thorne, in 300 Years of Gravitation, eds. S. W. Hawking and W. Israel (Cambridge University Press, Cambridge, 1987).Google Scholar
  11. [10]
    J. Weber, Phys. Rev. 117 (1960) 306.MathSciNetADSzbMATHCrossRefGoogle Scholar
  12. [11]
    W. B. Davenport, Jr. and W. L. Root, An Introduction to the Theory of Random Signals and Noise (McGraw-Hill, New York, 1958).zbMATHGoogle Scholar
  13. [12]
    N. Bohr, Nature 121 (1928) 580ADSzbMATHCrossRefGoogle Scholar
  14. [12a]
    reprinted in J. A. Wheeler and W. H. Zurek, eds., Quantum Theory and Measurement (Princeton University Press, Princeton, New Jersey, 1983).Google Scholar
  15. [13]
    C. M. Caves, in Quantum Measurement and Chaos, eds. E. R. Pike and S. Sarkar (Plenum, New York, 1987).Google Scholar
  16. [14]
    P. A. M. Dirac, The Principles of Quantum Mechanics (Clarendon Press, Oxford, 1958).zbMATHGoogle Scholar
  17. [15]
    R. Weiss, in Sources of Gravitational Radiation, ed. L. Smarr (Cambridge University Press, Cambridge, 1979) p. 7.Google Scholar
  18. [16]
    C. M. Caves, Phys. Rev. Lett 45 (1980) 75.ADSCrossRefGoogle Scholar
  19. [17]
    A. Brillet, J. Gea-Banacloche, G. Leuchs, C. N. Man and J. Y. Vinet, in The Detection of Gravitational Waves, ed. D. G. Blair (Cambridge University Press, Cambridge, 1991).Google Scholar
  20. [18]
    A. Abramovici, W. E.Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, Science 256 (1992) 325.ADSCrossRefGoogle Scholar
  21. [19]
    D. Shoemaker, R. Schilling, L. Schnupp, W. Winkler, K. Maischberger, and A. Rüdiger, Phys. Rev. D38 (1988) 423.ADSGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1994

Authors and Affiliations

  • Peter R. Saulson
    • 1
  1. 1.Department of PhysicsSyracuse UniversitySyracuseUSA

Personalised recommendations