Advertisement

Critical Phenomena in Black Holes and the Emergence of a Two Dimensional Quantum Description

  • C. O. Lousto
Part of the NATO ASI Series book series (ASIC, volume 427)

Abstract

We study the occurrence of critical phenomena in black holes, derive the critical exponents and show that they fulfill the scaling laws. Correlation functions critical exponents and Renormalization Group considerations assign an effective dimension, d = 2, to the system. The two-dimensional Gaussian approximation to critical systems is shown to reproduce all the black hole’s critical exponents. Higher order corrections (which are always relevant) are discussed. Identifying the two-dimensional surface with the event horizon and noting that generalization of scaling leads to conformal invariance and then to string theory, we arrive to ‘t Hooft’s string interpretation of black holes.

Keywords

Black Hole Renormalization Group Event Horizon Critical Exponent Black Hole Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. E. Stanley, Introduction to Phase Transitions and Critical Phenomena, Oxford Univ. Press, Oxford (1971).Google Scholar
  2. 2.
    K. G. Wilson, Rev. Mod. Physics., 55, 583 (1983).ADSCrossRefGoogle Scholar
  3. 3.
    D. J. Amit, Field Theory, the Renormalization Group, and Critical Phenomena, World Sci., Singapore, 2nd Ed. (1992).Google Scholar
  4. 4.
    J. J. Binney, N. J. Dowrik, A. J. Fisher and M. E. J. Newman, The theory of Critical Phenomena, Clarendon Press, Oxford (1992).zbMATHGoogle Scholar
  5. 5.
    K. G. Wilson and J. Kogut, Phys. Rep., C12, 75 (1974).ADSCrossRefGoogle Scholar
  6. 6.
    J. M. Bardeen, B. Carter and S. W. Hawking, Commun. Math. Phys., 31, 161 (1973).MathSciNetADSzbMATHCrossRefGoogle Scholar
  7. 7.
    J. D. Bekenstein, Phys. Rev., D7, 949 (1973)MathSciNetADSGoogle Scholar
  8. 7a.
    J. D. Bekenstein, ibid, D7, 2333 (1973)MathSciNetADSGoogle Scholar
  9. 7b.
    J. D. Bekensteinibid, D9, 3292 (1974).ADSGoogle Scholar
  10. 8.
    R. M. Wald, in Black Hole Physics, V. De Sabbata and Z. Zhang Eds, Nato Asi series, Vol. 364 (1992), p 55–97.CrossRefGoogle Scholar
  11. 9.
    C. O. Lousto, The fourth Law of Black Hole thermodynamics, Nucl. Phys. B, (1993).Google Scholar
  12. 10.
    P. C. W. Davies, Proc. R. Soc. Lond., A353, 499 (1977).ADSGoogle Scholar
  13. 11.
    D. Tranah and P. T. Landsberg, Collective Phenomena, 3, 81 (1980).MathSciNetGoogle Scholar
  14. 12.
    P. Hut, Mon. N. R. Astr. S., 180, 379 (1977).ADSGoogle Scholar
  15. 13.
    L. P. Kadanoff, Physics, 2, 263, 1966Google Scholar
  16. 14.
    A. Hankey and H. E. Stanley, Phys. Rev., B6, 3515 (1972).ADSGoogle Scholar
  17. 15.
    M. E. Fisher, in Critical Phenomena, F. J. W. Hahne Ed, Springer Verlag, Berlin (1982), p 1–139.Google Scholar
  18. 16.
    D. W. Sciama, P. Candelas and D. Deutsch, Advances in Physics, 30, 327 (1981).ADSCrossRefGoogle Scholar
  19. 17.
    T. H. Berlin and M. Kac, Phys. Rev., 86, 821 (1952).MathSciNetADSzbMATHCrossRefGoogle Scholar
  20. 18.
    J. B. Hartle and S. W. Hawking, Phys. Rev. D 13, 191 (1976).ADSCrossRefGoogle Scholar
  21. 19.
    K. S. Thorne et al., Black holes: The membrane Paradigm, Yale Univ. Press, New Heaven (1986).Google Scholar
  22. 20.
    G. ’t Hooft, Nucl. Phys. B 355, 138 (1990).CrossRefGoogle Scholar
  23. 21.
    J. D. Bekenstein, preprint UCSB-TH-93-02 (1993).Google Scholar
  24. 22.
    M. Schiffer, preprint CERN-TH 6811/93 (1993).Google Scholar
  25. 23.
    C. O. Lousto and R. Müller, preprint Konstanz (1993).Google Scholar
  26. 24.
    T. Dray and G.’t Hooft, Nucl. Phys. B 253, 173 (1985).ADSCrossRefGoogle Scholar
  27. 25.
    C. O. Lousto and N. Sánchez, Phys. Lett. B 220, 55 (1989).MathSciNetADSCrossRefGoogle Scholar
  28. 26.
    J. L. Cardy, in Phase Transitions and Critical Phenomena, Eds. C. Domb and J. L. Lebowitz, Vol. 11, Academic Press, London, p 55 (1987).Google Scholar
  29. 27.
    C. Itzykson, H.Saleur and J.B. Zuber, Conformal invariance and Applications to Statistical Mechanics, World Sci., Singapore (1988).zbMATHGoogle Scholar
  30. 28.
    M. B. Green, J. H. Schwarz and E. Witten, Supestring Theory, Vol. 1, Cambridge Univ. Press., Cambridge (1987).Google Scholar
  31. 29.
    G. ’t Hooft, Nucl. Phys., B 256, 727 (1985).ADSCrossRefGoogle Scholar
  32. 30.
    Z. Qiu, Nucl. Phys., B 270, 205 (1986).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1994

Authors and Affiliations

  • C. O. Lousto
    • 1
  1. 1.Fakultät für PhysikUniversität KonstanzKonstanzGermany

Personalised recommendations