A New Topology for Spatial Infinity ?

  • Peter G. Bergmann
  • Gerrit J. Smith
Part of the NATO ASI Series book series (ASIC, volume 427)


For spatial infinity we introduce the topology of a projective Lorentz sphere. This topology is indicated by the reduced variety of physically admissible solutions of both the electromagnetic and the gravitational field equations. In this topology past and future are fused, so that the notions of cause and effect lose their intuitive meanings.


Admissible Solution Cauchy Surface Cauchy Data Antipodal Point Null Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. Alexander and P.G. Bergmann, Found. Phys. 16, 445 (1986).MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    P.G. Bergmann, Gen. Rel. Grav. 19, 371 (1987).MathSciNetADSCrossRefGoogle Scholar
  3. 2a.
    P.G. Bergmann, Gen. Rel. Grav. 21, 271 (1989).MathSciNetADSCrossRefGoogle Scholar
  4. 3.
    S.W. Hawking and G.F.R. Ellis, The Large-scale Structure of Space-Time. Cambridge University Press, Cambridge 1973. p. 181f.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1994

Authors and Affiliations

  • Peter G. Bergmann
    • 1
  • Gerrit J. Smith
    • 2
  1. 1.Departments of PhysicsSyracuse University and New York UniversityUSA
  2. 2.Department of PhilosophyFordham UniversityUSA

Personalised recommendations