Skip to main content

Molecular Recognition of Dinucleotides and Amino Acids by Artificial Receptors Containing a Bicyclic Guanidinium Subunit

  • Chapter
Computational Approaches in Supramolecular Chemistry

Part of the book series: NATO ASI Series ((ASIC,volume 426))

Abstract

Detailed molecular models have been generated for the complexes of 2′-deoxyadenylyl(3′→ 5′)-2′-deoxyadenosine and 2′-deoxyadenylyl(3′→ 5′)-2′-deoxyguanosine with a synthetic receptor for dinucleotides, and of L-phenylalanine and L-tryptophan with an enantioselective receptor for aromatic L-amino acids. The structures have been optimized by energy minimization techniques and further subjected to molecular dynamics simulations at room temperature. The resulting trajectories have provided valuable information about the relative stability of the complexes and the conformational preferences of host and guest molecules in the bound state. The relative contributions of each constitutive block to the binding enthalpies have been dissected. This knowledge should aid in our understanding of the forces involved in molecular recognition and in the design of improved novel receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. a) Peacock, S. C.; Walba, D. M.; Gaeta, F. C. A.; Helgeson, R. C.; Cram, D. J. J. Am. Chem. Soc. 1980, 102, 2043, and references therein, (b) Rebek, Jr., J.; Nemeth, D.; ibid. 1985, 107, 6738. (c) Rebek, Jr., J.; Askew, B.; Nemeth, D.; Parris, K. ibid. 1987, 109, 2432. (d) Pirkle, W. H.; Pochawski, T. C. ibid. 1987, 109, 5975. (e) Aoyama, Y.; Yamagishi, A.; Asagawa, M.; Toi, H.; Ogoshi, H. ibid. 1988, 110, 4076. (f) Liu, R.; Sanderson, P. E. J.; Still, W. C. J. Org. Chem. 1990, 55, 5184.

    Google Scholar 

  2. a) Hamilton, A. D.; van Engen, D. J. Am. Chem. Soc. 1987, 109, 5035. (b) Kelly, T. R.; Maguire, M. P. ibid. 1987, 109, 6549. (c) Rebek, Jr., J. Angew. Chem. Int Ed. Engl. 1990, 29, 245, and references therein, (d) Jeong, K. S.; Tjivikua, T.; Muehldorf, A.; Deslongchamps, G.; Famulok, M.; Rebek, Jr. J. J. Am. Chem. Soc. 1991, 113, 201. (e) Medina, J. C.; Li, C.; Bott, S. G.; Atwood, J. L; Gokel, G. W. ibid. 1991, 113, 366.

    Google Scholar 

  3. a) Tabushi, I.; Kobuke, Y.; Imuta, J. J. Am. Chem. Soc. 1980, 102, 1744, and (b) 1981, 103, 6152. (c) Schmidtchen, F. P. Tetrahedron Lett. 1989, 30, 4493. (d) Hosseini, M. W.; Blacker, A. J.; Lehn, J.-M. J. Am. Chem. Soc. 1990, 112, 3896. (e) Furuta, H.; Magda, D.; Sessler, J. L ibid. 1991, 113, 978. (f) Li, T.; Krasne, S. J.; Persson, B.; Kaback, H. R.; Diederich, F. J. Org. Chem. 1993, 58, 380.

    Article  Google Scholar 

  4. a) Kikuchi, Y.; Kato, Y.; Tanaka, Y.; Toi, H.; Aoyama, Y. J. Am. Chem. Soc. 1991, 113, 1349. (b) Bonar-Law, R. P.; Davis, A. P.; Murray, B. A. Angew. Chem. Int. Ed. Engl. 1990, 29, 1407.

    Article  Google Scholar 

  5. Polyammonium receptors: (a) Kodama, M.; Kimura, E.; Yamaguchi, S. J. Chem. Soc., Dalton Trans. 1980, 2536. (b) Kimura, E.; Sakonaka, A.; Yatsunami, T.; Kodama, M. J. Am. Chem. Soc. 1981, 103, 3041. (c) Dietrich, B.; Hosseini, M. W.; Lehn, J.-M.; Sessions, R. B. ibid. 1981, 103, 1282, and (d) Helv. Chim. Acta 1983, 66, 1262. (e) Hosseini, M. W.; Lehn, J.-M. ibid. 1987, 70, 1312. For water soluble guanidinium receptors, see (f) Dietrich, B.; Fyles, D. L; Fyles, T. M.; Lehn, J.-M. ibid. 1979, 62, 2763. (g) Dietrich, B.; Fyles, T. M.; Lehn, J.-M.; Pease, L G.; Fyles, D. L J. Chem. Soc., Chem. Commun. 1978, 934. (h) Schmidtchen, F. P. Tetrahedron Lett. 1989, 30, 4493.

    Google Scholar 

  6. Galán, A.; de Mendoza, J.; Toiron, C.; Bruix, M.; Deslongchamps, G.; Rebek, Jr., J. J. Am. Chem.Soc. 1991, 113, 9424.

    Article  Google Scholar 

  7. Galán, A.; Andreu, D.; Echavarren, A. M.; Prados, P.; de Mendoza, J. J. Am. Chem. Soc. 1992, 114, 1511.

    Article  Google Scholar 

  8. a) Echavarren, A.; Galán, A.; de Mendoza, J.; Salmerón, A.; Lehn, J.-M. Helv. Chim. Acta 1988, 71, 685. (b) Kurzmeier, H.; Schmidtchen, F. P. J. Org. Chem. 1990, 55, 3749.

    Article  Google Scholar 

  9. Echavarren, A.; Galán, A.; Lehn, J.-M.; de Mendoza, J. J. Am. Chem. Soc. 1989, 111, 4994.

    Article  CAS  Google Scholar 

  10. de Mendoza, J. An. Quím. 1993, 89, 57.

    CAS  Google Scholar 

  11. Galán, A.; Pueyo, E.; Salmerón, A.; de Mendoza, J. Tetrahedron Lett. 1991, 32, 1827.

    Article  Google Scholar 

  12. For a recent account on nucleotide transport, including other GMP carriers based on expanded porphyrins, see Sessler, J. L; Furuta, H.; Král, V. Supramol. Chem. 1993, 1, 209, and references therein.

    Google Scholar 

  13. A similar receptor, carrying only one adenine module, was shown to be selective for the extraction of cyclic AMP over cyclic GMP: Deslongchamps, G.; Galán, A.; de Mendoza, J.; Rebek, Jr., J. Angew. Chem. Int. Ed. Engl. 1992, 31, 61.

    Article  Google Scholar 

  14. Rebek, Jr., J.; Usman, N.; de Mendoza, J., U.S. Patent appl. filed Aug. 14, 1992.

    Google Scholar 

  15. Recent experiments showed that receptor 1 is able to transport very efficiently d(AA) across model membranes: unpublished work in collaboration with Andreu, C. and Rebek, Jr. J.

    Google Scholar 

  16. Behr, J.-P.; Lehn, J.-M. J. Am. Chem. Soc. 1973, 95, 6108.

    Article  CAS  Google Scholar 

  17. For earlier examples of non chiral recognition of zwitterionic amino acids under neutral conditions, see ref. 1b, 1c, and 1e.

    Google Scholar 

  18. Mitchell, A. R.; Kent, S. B. H.; Chu, I. C.; Merrifield, R. B. Anal. Chem. 1978, 50, 637.

    Article  CAS  Google Scholar 

  19. Unpublished results obtained in collaboration with R. Marchelli, University of Parma, Italy.

    Google Scholar 

  20. Howard, A. E.; Kollman, P. A. J. Med. Chem. 1988, 31, 1669.

    Google Scholar 

  21. INSIGHT-II, version 2.1.0; Biosym Technologies. 9685 Scranton Road, San Diego, CA 92121–2777.

    Google Scholar 

  22. Müller, G.; Riede, J.; Schmidtchen, F. P. Angew. Chem. Int. Ed. Engl. 1988, 27, 1516.

    Article  Google Scholar 

  23. Gleich, A.; Schmidtchen, F. P.; Mikulcik, P.; Müller, G. J. Chem. Soc. Chem. Commun. 1990, 55.

    Google Scholar 

  24. He, G.-X.; Kikukawa, K.; Nishiyama, N.; Ohe, H.; Matsuda, T. Bull. Chem. Soc. Jpn. 1988, 61, 3785.

    Article  CAS  Google Scholar 

  25. Gandour, R. D.; Fronczek, F. R.; Gatto, V. J.; Minganti, C.; Schultz, R. A.; White, B. D.; Arnold, K. A.; Mazzocchi, D.; Miller, S. R.; Gokel, G. W. J. Am. Chem. Soc. 1986, 108, 4078.

    Article  CAS  Google Scholar 

  26. Dewar, M. J. S.; Zoebisch, E. G.; Healy, E. F.; Stewart, J. J. P. J. Am. Chem. Soc. 1985, 107, 3902.

    Article  CAS  Google Scholar 

  27. Dewar, M. J. S.; Stewart, J. J. P. AMPAC, QCPE 506, Quantum Chemistry Program Exchange, Indiana University, Bloomington, Indiana 47405.

    Google Scholar 

  28. Ferenczy, G. G.; Reynolds, C. A.; Richards, W. G. J. Comput. Chem. 1990, 11, 159.

    Article  CAS  Google Scholar 

  29. Weiner, S. J.; Kollman, P. A.; Nguyen, D. T.; Case, D. A. J. Comp. Chem. 1986, 7, 230.

    Article  CAS  Google Scholar 

  30. Pearlman, D. A.; Case, D. A.; Caldwell, J.; Seibel, G.; Singh, U. C.; Weiner, P.; Kollman, P. A. AMBER version 4.0 1991. Department of Pharmaceutical Chemistry, University of California, San Francisco.

    Google Scholar 

  31. Berendsen, H. J. C.; Postma, J. P. M.; van Gunsteren, W. F.; Di Nola, A.; Haak, J. R. J. Chem. Phys. 1984, 81, 3684.

    Article  CAS  Google Scholar 

  32. Saenger, W. Principles of Nucleic Acid Structure, Springer-Verlag: New York, pp. 17–20, 1988.

    Google Scholar 

  33. Altona, C.; Sundaralingam, M. J. Am. Chem. Soc. 1972, 94, 8205.

    Article  CAS  Google Scholar 

  34. Gabb, H. A.; Harvey, S. C. J. Am. Chem. Soc. 1993, 115, 4218.

    Article  CAS  Google Scholar 

  35. Conn, M. M.; Deslongchamps, G.; de Mendoza, J.; Rebek, Jr., J. J. Am. Chem. Soc. 1993, 115, 3548.

    Article  CAS  Google Scholar 

  36. Bugg, C. E.; Thomas, J. M.; Sundaralingam, M.; Rao, S. T. Biopolymers 1971, 10, 175.

    Article  CAS  Google Scholar 

  37. Gallego, J.; Ortiz, A. R.; Gago, F. J. Med. Chem. 1993, 36, 1548.

    Article  CAS  Google Scholar 

  38. Rein, R. In Perspectives in Quantum Chemistry and Biochemistry, vol. II, Pullman, B., Ed.; John Wiley & Sons: New York, pp. 307–362, 1978.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

De Mendoza, J., Gago, F. (1994). Molecular Recognition of Dinucleotides and Amino Acids by Artificial Receptors Containing a Bicyclic Guanidinium Subunit. In: Wipff, G. (eds) Computational Approaches in Supramolecular Chemistry. NATO ASI Series, vol 426. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1058-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1058-7_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4460-8

  • Online ISBN: 978-94-011-1058-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics