Simulation of Self-Assembled Monolayers: Microscopic Structure of Amino Alkylthiols

  • Ursula Röthlisberger
  • Michael L. Klein
  • Michiel Sprik
Part of the NATO ASI Series book series (ASIC, volume 426)


We present the results of molecular dynamics calculations carried out on self-assembled monolayers (SAMs) formed from alkyl thiols chemisorbed on a gold (111) substrate. The alkyl tails are functionalized by polar groups (-NH2) with the potential of forming hydrogen bonds. Particular attention is focused on the prediction of the structural characteristics of the funtionalized outer surface of the SAM in an attempt to make contact with scanning tunneling microscopy images. We examine the dependence of the predicted structure on the model used to represent the alkyl chains.


Alkyl Chain Scanning Tunneling Microscopy Scanning Tunneling Microscopy Image Molecular Dynamic Calculation Scanning Force Microscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A. Ulman, An Introduction to Ultrathin Organic Films, Academic Press Inc., New York, 1991.Google Scholar
  2. [2]
    L. Strong and G.M. Whitesides, Langmuir 4, 546 (1988).CrossRefGoogle Scholar
  3. [3]
    G.M. Whitesides and C.M. Bain, J. Am. Chem. Soc. 111, 7164 (1989).CrossRefGoogle Scholar
  4. [4]
    L. Häussling, B. Michel, H. Ringsdorf, and H. Rohrer, Angew. Chem. Int. Ed. Engl. 30, 571 (1991).CrossRefGoogle Scholar
  5. [5]
    C.A. Widrig, C.A. Alves, and M.D. Porter, J. Am. Chem. Soc. 113, 2805 (1991).CrossRefGoogle Scholar
  6. [6]
    Y.T. Kim and A.J. Bard, Langmuir, 8, 1096 (1992).CrossRefGoogle Scholar
  7. [7]
    W. Mizutani, D. Anselmetti, and B. Michel, in Computations for the Nanoscale, pp 49–62, P.E. Blöchl et al. (eds.), Kluwer, 1993.Google Scholar
  8. [8]
    J. Hautman and M.L. Klein, J. Chem. Phys. 91, 4994 (1989); ibid, 93, 7483 (1990); Phys. Rev. Lett. 68, 2345 (1991).Google Scholar
  9. [9]
    J. Hautman, J.P. Bareman, W. Mar, and M.L. Klein, J. Chem. Soc. Faraday Trans. 87, 2031 (1991); J. Hautman and M.L. Klein, Molec. Phys. 75, 379 (1992).CrossRefGoogle Scholar
  10. [10]
    J.I. Siepmann and I.R. McDonald, Molec. Phys., 75, 255 (1992); ibid, 79, 457Google Scholar
  11. [11]
    1993); Phys. Rev. Lett. 70, 453 (1993); see also: Computations for the Nanoscale, pp 49–62, P.E. Blöchl et al. (eds.), Kluwer, 1993.Google Scholar
  12. [12]
    J. Calvert, et al., Science, 252, 551 (1991).CrossRefGoogle Scholar
  13. [13]
    J.N. Glosli and G.M. McClelland Phys. Rev. Lett., 70, 1960 (1993).CrossRefGoogle Scholar
  14. [14]
    P.E. Laibinis, G.M. Whitesides, D.L. Allara, Y.-T. Tao, A.N. Parikh, and R.G. Nuzzo, J. Am. Chem. Soc., 113, 7152 (1991); N.L. Abbot, J.P. Folkers and G.M. Whitesides, Science, 257, 1380 (1992).Google Scholar
  15. [15]
    D. Anselmetti, C. Gerber, B. Michel, H. Wolf, H. J. Guentherodt and H. Rohrer, Europhys. Lett. 23, 421 (1993).CrossRefGoogle Scholar
  16. [16]
    C. Schoenenberger, J. A. M. Sondag-Huethoist, J. Joritsma, and L. G. J. Fokkink (preprint submitted to Langmuir).Google Scholar
  17. [17]
    D. Anselmetti, Ph.D. thesis ETH Zurich.Google Scholar
  18. [18]
    H. Wolf, Diploma thesis, University of Mainz, Mainz (1991).Google Scholar
  19. [19]
    W. Jorgensen, J. Phys. Chem. 90, 1277 (1986).Google Scholar
  20. [20]
    D.E. Williams, J. Chem. Phys. 47, 4680 (1967).CrossRefGoogle Scholar
  21. [21]
    A. Bellemans and J.-P. Ryckaert, J. Chem. Soc. Faraday Discuss. 66, 95 (1978).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1994

Authors and Affiliations

  • Ursula Röthlisberger
    • 1
  • Michael L. Klein
    • 1
  • Michiel Sprik
    • 2
  1. 1.Department of ChemistryUniversity of PennsylvaniaPhiladelphiaUSA
  2. 2.IBM Research DivisionZurich Research LaboratoryRüschlikonSwitzerland

Personalised recommendations