Advertisement

MD Simulations on Synthetic Ionophores and Their Cation Complexes: Comparison of Aqueous/Non-Aqueous Solvents

  • G. Wipff
  • L. Troxler
Chapter
Part of the NATO ASI Series book series (ASIC, volume 426)

Abstract

Molecular Dynamics simulations represent a powerful approach to study macrocyclic receptors and their complexes in solution. They are used to compare aqueous with acetonitrile solutions of the 18-crown-6, of the 222 cryptand and of a calix[4]arenetetraamide in their free and complexed states. It is shown how precise solute-solvent interactions determine the conformational preferences and molecular recognition in solution. For the cation complexes (Li+ — Cs+, Ca2+, Eu3+), the interactions between the encapsulated-ion and the solvent are pictured as a function of the size and charge of the ion and the nature of the solvent. The importance of solvent granularity, and bridging hydrogen bonding pattern with water is emphasized. The question of ion pairing after cation complexation is investigated in water and acetonitrile. Free energy perturbation calculations on the binding selectivity of 222 for alkali cations predict correctly the peak of selectivity for K+ in water, methanol, and acetonitrile, as a result of ion receptor complementarity and solvation effects.

Keywords

Crown Ether Cation Complex Acetonitrile Solution Supramolecular Chemistry Binding Selectivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    Simon, W.; Morf, W. E.; Meier, P. C. Struct. Bonding 1973, 16, 113; Ovchinnikov, Y. A.; Ivanov, V. T.; Shkrob, A. M. Membrane Active Complexeones; Elsevier: Amsterdam, 1974. Bronner, F. Kleinzeller, A. Current Topics in Membranes and Transport, Academic Press, New York, 1974; Pullman, A. Transport through membranes: Carriers, Channels, Pumps.; Kluwer Acad. Publ. 1988.Google Scholar
  2. (2).
    Inoue, Y.; Gokel, G. Cation Binding by Macrocycles. Complexation of cationic species by crown ethers.; M. Dekker, Inc. New York: 1992.Google Scholar
  3. (3).
    Pedersen, C. J.; Frensdorff, H. K. Angew. Chem. Int. Ed. 1972, 11, 16; Pedersen, C. J. J. Am. Chem. Soc. 1967, 89, 7017.CrossRefGoogle Scholar
  4. (4).
    Lehn, J. M. Struct. Bonding 1973, 161, 1; Lehn, J. M. Pure Appl. Chem. 1978, 50, 871; Acc. Chem. Res. 1978, 11, 49.CrossRefGoogle Scholar
  5. (5).
    Cram, D. J. Science 1988, 240, 760.CrossRefGoogle Scholar
  6. (6).
    Wipff, G.; Kollman, P. A.; Lehn, J.-M. J. Mol. Struct. 1983, 93, 153.CrossRefGoogle Scholar
  7. (7).
    Dobler, M. Chimia 1984, 12, 415.Google Scholar
  8. (8).
    Fischer, E. Chem. Ber. 1894, 27, 2985; Pauling, L. Nature 1948, 161, 707.Google Scholar
  9. (9).
    Diederich, F.; Smithrud, D. B.; Sanford, E. M.; Wyman, T. B.; Ferguson, S. B.; Carcanague, D. R.; Chao, I.; Houk, K. N. Acta Chem. Scand. 1992, 46, 205.CrossRefGoogle Scholar
  10. (10).
    Dobler, M. Ionophores and their Structures.; Wiley Interscience: New York, 1981.Google Scholar
  11. (11).
    Lehn, J. M. Pure Appl. Chem. 1980, 52, 2303.CrossRefGoogle Scholar
  12. (12).
    Kauffmann, E.; Lehn, J. M.; Sauvage, J. P. Helv. Chim. Acta 1976, 59, 1099.CrossRefGoogle Scholar
  13. (13).
    Cox, B. G.; Garcia-Rosas, J.; Schneider, H. J. Am. Chem. Soc. 1981, 103, 1384.CrossRefGoogle Scholar
  14. (14).
    Danil de Namor, A.; Salazar, F. F. J. Chem. Soc. Faraday Trans. I 1988, 84, 3539.CrossRefGoogle Scholar
  15. (15).
    Lautz, J.; Kessler, H.; van Gunsteren, W. F.; Weber, H.-P.; Wenger, R. M. Biopolymers, 1990, 29, 1669. Kessler, H.; Gehrke, M.; Lautz, J.; Köck, M.; Seebach, D.; Thaler, A. Biochem. Pharm; 1990, 40, 169. Kessler, H.; Köck, M.; Wein, T.; Gehrke, M.; Helv. Chim. Acta 1990, 73, 1818, Köck, M.; Kessler, H.; Seebach, D.; Thaler, A. J. Am. Chem. Soc. 1992, 114, 2676.CrossRefGoogle Scholar
  16. (16).
    Chu, I.-H.; Zhang, H.; Dearden, D. J. Am. Chem. Soc. 1993, 115, 5736. Zhang, H.; Chu, I.-H.; Leming, S.; Dearden, D. V. J. Am. Chem. Soc. 1991, 113, 7415. Vincenti, M.; Pelizzetti, E.; Dalcanale, E.; Soncini, P. Pure Appl. Chem. 1993 65, 1507.CrossRefGoogle Scholar
  17. (17).
    Sawada, M.; Okumura, Y.; Shizuma, M.; Takai, Y.; Hidaka, Y.; Yamada, H.; Tanaka, T.; Kaneda, T.; Hirose, K.; Misumi, S.; Takahashi, S. J. Am. Chem. Soc. 1993, 115, 7381. and references cited therein.Google Scholar
  18. (18).
    Auffinger, P.; Wipff, G. J. Comput. Chem. 1990, 11, 19.CrossRefGoogle Scholar
  19. (19).
    Kollman, P. A.; Wipff, G.; Singh, U. C. J. Am. Chem. Soc. 1985, 107, 2212.CrossRefGoogle Scholar
  20. (20).
    Wipff, G.; Kollman, P. A. New. J. Chem. 1985, 9, 457.Google Scholar
  21. (21).
    Wipff, G.; Wurtz, J. M. New. J. Chem. 1989, 13, 807.Google Scholar
  22. (22).
    Wipff, G.; Weiner, P.; Kollman, P. A. J. Am. Chem. Soc. 1982, 104, 3249. For other molecular mechanics studies on 18C6, see Perrin, R.; Decoret, C.; Bertholon, G.; Lamartine, R. Nouv. J. Chimie 1983, 7, 263; Bovili, M. J.; Chadwick, D. J.; Sutherland, I. O. J. Chem. Soc. Perk. Trans. 2 1980, 1529; Badetscher, M.; Welti, M.; Portman, P.; Pretsch, E. Topics Curr. Chem. 1986, 136, 17. See also ref. 7Google Scholar
  23. (23).
    Wipff, G.; Wurtz, J. M. Dynamics Views of Macrocyclic Receptors: Molecular Dynamics Simulations and Normal Modes Analysis in “Transport through Membranes, Carriers, Channels and Pumps”; Reidei; Pullman, Dordrecht, 1988, 1.CrossRefGoogle Scholar
  24. (24).
    Clementi, E.; Chin, S. Structure and Dynamics of Nucleic Acids, Proteins, and Membranes; Plenum Press N.Y.: 1986.Google Scholar
  25. (25).
    Hannongbua, S.; Rode, B. M. J. Chem. Soc. Farad. Trans. 2 1986, 82, 1021.Google Scholar
  26. (26).
    Ranghino, G.; Romano, S.; Lehn, J. M.; Wipff, G. J. Am. Chem. Soc. 1985, 107, 7873.CrossRefGoogle Scholar
  27. (27).
    Jorgensen, W. L.; Boudon, S.; Nguyen, T. B. J. Am. Chem. Soc. 1989, 111, 755.CrossRefGoogle Scholar
  28. (28).
    Jorgensen, W. L.; Nguyen, T. B. Structure and Binding for Cyclophane-Arene Complexes in Water from Monte Carlo Simulations in “Supramolecular Chemistry”; Kluwer, 1992, 383; Jorgensen, W. L.; B., N. T.; Sanford, E. M.; Chao, I.; Houk, K. N.; Diederich, F. J. Am. Chem. Soc. 1992, 114, 4003.Google Scholar
  29. (29).
    Jorgensen, W. L. Acc. Chem. Res. 1989, 22, 184 and references cited therein.Google Scholar
  30. (30).
    Jorgensen, W. L.; Buckner, J. K.; Boudon, S.; Tirado-Rives, J. J. Chem. Phys. 1988, 89, 3742.CrossRefGoogle Scholar
  31. (31).
    Ha, Y. L.; Chakraborty, A. K. J. Phys. Chem. 1991, 95, 10781.CrossRefGoogle Scholar
  32. (32).
    Toner, J.-L. Modern Aspects of Host-Guest Chemistry: Molecular Modeling of Conformationally restricted Hosts in “Crown Ethers and Analogs”; S. Pataï; Wiley; Interscience Publ., 1989, 77.Google Scholar
  33. (33).
    Lybrand, T. P.; McCammon, J. A.; Wipff, G. Proc. Natl. Acad. Sci. USA 1986, 83, 833.CrossRefGoogle Scholar
  34. (34).
    Wipff, G. J. Coord. Chem. 1992, 27, 7 and references cited therein.Google Scholar
  35. (35).
    Auffinger, P.; Wipff, G. J. Am. Chem. Soc. 1991, 113, 5976.CrossRefGoogle Scholar
  36. (36).
    Guilbaud, P.; Varnek, A.; Wipff, G. J. Am. Chem. Soc. 1993, 115, 8298.CrossRefGoogle Scholar
  37. (37).
    Straatsma, T. P.; McCammon, J. A. J. Chem. Phys. 1989, 91, 3631.CrossRefGoogle Scholar
  38. (38).
    Sun, Y.; Kollman, P. A. J. Phys. Chem. 1993, 97, 5108.Google Scholar
  39. (39).
    Eisenman, G.; Alvarez, O.; Aquist, J. J. Incl. Phenom. Mol. Recogn. 1992, 12, 23; Eisenman, G.; Alvarez, O. Ionic selectivity of proteins: Lessons from MD simulations on Valinomycin”in “Biomembrane Structure and Function”; B. P. Gaber, K. R. K. Easwaran; Adenine, 1992, 321.Google Scholar
  40. (40).
    Grootenhuis, P. D. J.; Kollman, P. A.; Groenen, L. C.; Reinhoudt, D. N.; van Hummel, G. J.; Ugozzoli, F.; Andreetti, G. D. J. Am. Chem. Soc. 1990, 112, 4165.CrossRefGoogle Scholar
  41. (41).
    Miyamoto, S.; Kollman, P. A. J. Am. Chem. Soc. 1992, 114, 3668.CrossRefGoogle Scholar
  42. (42).
    Kollman, P. A.; Grootenhuis, P. D. J.; Lopez, M. A. Pure Appl. Chem. 1989, 61, 593.CrossRefGoogle Scholar
  43. (43).
    Dang, L. X.; Kollman, P. A. J. Am. Chem. Soc. 1990, 112, 5716.CrossRefGoogle Scholar
  44. (44).
    van Eerden, J.; Briels, W. J.; Harkema, S.; Feil, D. Chem. Phys. Lett. 1989, 164, 370.CrossRefGoogle Scholar
  45. (45).
    van Eerden, J. V.; Harkema, S.; Feil, D. J. Phys. Chem. 1988, 92, 5076.CrossRefGoogle Scholar
  46. (46).
    Marrone, T. J.; K.M. Merz, J. J. Am. Chem. Soc. 1992, 114, 7542.CrossRefGoogle Scholar
  47. (47).
    Mazor, M. H.; Mc Cammon, J. A.; Lybrand, T. P. J. Am. Chem. Soc. 1989, 111, 55.CrossRefGoogle Scholar
  48. (48).
    Mazor, M. H.; McCammon, J. A.; Lybrand, T. P. J. Am. Chem. Soc. 1990, 112, 4411.CrossRefGoogle Scholar
  49. (49).
    Aqvist, J.; Alvarez, O.; Eisenman, G. J. Phys. Chem. 1992, 96, 10019.CrossRefGoogle Scholar
  50. (50).
    Auffinger, P.; Wipff, G. J. Chimie Phys. 1991, 88, 2525.Google Scholar
  51. (51).
    Varnek, A.; Wipff, G. J. Phys. Chem. 1993, 97, 10840.CrossRefGoogle Scholar
  52. (52).
    Troxler, L.; Wipff, G. J. Am. Chem. Soc. 1994, 000.Google Scholar
  53. (53).
    Ha, Y. L.; Chakraborty, A. K. J. Phys. Chem 1992, 96, 6410.CrossRefGoogle Scholar
  54. (54).
    Straatsma, T. P.; McCammon, J. A. Annu. Rev. Phys. Chem. 1992, 43, 40; McCammon, J. A.; Harvey, S. C. Dynamics of Proteins and Nucleic Acids.; Cambridge University Press 1987; Mezei, M.; Beveridge, D. Ann. N. Y. Acad. Sci. 1986, 482, 1.CrossRefGoogle Scholar
  55. (55).
    Singh, C.; Weiner, P. K.; Caldwell, J.; Kollman, P. A. Amber 3.0, University of California San-Francisco 1987.Google Scholar
  56. (56).
    Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D. J. Chem. Phys. 1983, 79, 926.CrossRefGoogle Scholar
  57. (57).
    Jorgensen, W. L.; Briggs, J. M. Mol. Phys. 1988, 63, 547.CrossRefGoogle Scholar
  58. (58).
    Cram, D. J. Angew. Chem. Int. Ed. Engl. 1986, 25, 1039.CrossRefGoogle Scholar
  59. (59).
    Reinhoudt, D. N.; Dijkstra, P. J. Pure Appl. Chem. 1988, 60, 477.CrossRefGoogle Scholar
  60. (60).
    Maye, P. V.; Venanzi, C. A. J. Comput. Chem. 1991, 12, 994. Venanzi, C. A.; Canzius, P. M.; Zhang, Z.; Bunce, J. D. J. Comput. Chem. 1989, 10, 1038.Google Scholar
  61. (61).
    Izatt, R. M.; Bradshaw, J. S.; Nielsen, S. A.; Lamb, J. D.; Christensen, J. J.; Sen, D. Chem. Rev. 1985, 85, 271; Izatt, R. M.; Pawlak, K.; Bradshaw, J. S. Chem. Rev. 1991, 91, 1721.CrossRefGoogle Scholar
  62. (62).
    Nordlander, E. H.; Burns, J. H. Inorg. Chim. Acta 1986, 115, 31.CrossRefGoogle Scholar
  63. (63).
    Billeter, M.; Howard, A. E.; Kuntz, I. D.; Kollman, P. A. J. Am. Chem. Soc. 1988, 110, 8385; Sun, Y.; Kollman, P. A. J. Comput. Chem. 1992, 12, 33.Google Scholar
  64. (64).
    Fukushima, K.; Ito, M.; Sakurada, K.; Shiraishi, S. Chemistry Lett. 1988, 323 Fukuhara, K.; Ikeda, K.; Matsuura, H. J. Mol. Struct. 1990, 224, 203.; Matsuura, H.; Fukuhara, K.; Ikeda, K.; Tachikake, M. J. Chem. Soc., Chem. Commun. 1989, 1814.Google Scholar
  65. (65).
    Rogers, R. D.; Richards, P. D.; Voss, E. J. J. Indus. Phenom. 1988, 6, 65; Garrell, R. L.; Smyth, J. C.; Fronczek, F. R.; Gandour, R. J. Indus. Phenom. 1988, 6, 73.Google Scholar
  66. (66).
    Dietrich, B.; Kintzinger, J. P.; Lehn, J. M.; Metz, B.; Zahidi, A. J. Phys. Chem. 1987, 91, 6600; Dietrich, B.; Lehn, J. M.; Sauvage, J. P. Tetrahedron 1973, 29, 1647.Google Scholar
  67. (67).
    Ben-Naim, A. J. Phys. Chem. 1990, 94, 6893; Ben-Naim, A. Biopolymers 1990, 29, 567. J. Phys. Chem. 1991, 95, 1437.CrossRefGoogle Scholar
  68. (68).
    Westhof, E. Ann. Rev. Biophys., Biophys. Chem. 1988, 17, 125. Westhof, E. Structural Water of Nucleic Acids in “Water and Ions in Biomolecular Systems — Advances in Life Science”; Birkhäuser Verlag Basel 1990, 11.Google Scholar
  69. (69).
    Boudon, S.; Wipff, G. J. Chim. Phys. 1991, 88, 2443.Google Scholar
  70. (70).
    Loyola, V. M.; Wilkins, R. G. J. Am. Chem. Soc. 1975, 97, 7382; Loyola, V. M.; Pizer, R.; Wilkins, R. G. J. Am. Chem. Soc. 1977, 99, 7185; Bemtgen, J. M.; Springer, M. E.; Loyola, V. M.; Wilkins, R. G.; Taylor, R. W. Inorg. Chem. 1984, 23, 3348.Google Scholar
  71. (71).
    Haymore, B. L.; Lamb, J. D.; Christensen, J. J. Inorg. Chem. 1982, 21, 1598.CrossRefGoogle Scholar
  72. (72).
    Graf, E.; Lehn, J. M. J. Am. Chem. Soc. 1976, 98, 6403; Heyer, D.; Lehn, J. M. Tetrahedron. Lett. 1986, 27, 5869.CrossRefGoogle Scholar
  73. (73).
    Lehn, J. M. Angew. Chem., Int. Ed. Engl. 1988, 27, 89. Dietrich, B. Pure Appl. Chem. 1993, 65, 1457 and references cited therein.Google Scholar
  74. (74).
    Boudon, S.; Decian, A.; Fischer, J.; Hosseini, M. W.; Lehn, J. M.; Wipff, G. J. Coord. Chem. 1991, 23, 113.CrossRefGoogle Scholar
  75. (75).
    Boudon, S.; Wipff, G. J. Mol. Struct. (THEOCHEM) 1991, 228, 61.CrossRefGoogle Scholar
  76. (76).
    Gao, J.; Boudon, S.; Wipff, G. J. Am. Chem. Soc. 1991, 113, 9610.CrossRefGoogle Scholar
  77. (77).
    Pettitt, B. M.; Rossky, P. J. J. Chem. Phys. 1986, 84, 5836.CrossRefGoogle Scholar
  78. (78).
    Guàrdia, E.; Rey, R.; Padro, J. A. Chem. Phys. 1991, 155, 187; Guardia, E.; Rey, R.; Padro, J. J. Chem. Phys. 1991, 95, 2823. Dang, L. X.; Pettitt, B. M. J. Am. Chem. Soc. 1987, 109, 5531; J. Chem. Phys. 1987, 86, 6560; J. Phys. Chem. 1990, 94, 4303.CrossRefGoogle Scholar
  79. (79).
    Buckner, J. K.; Jorgensen, W. L. J. Am. Chem. Soc. 1989, 111, 2507.CrossRefGoogle Scholar
  80. (80).
    Dang, L. X. Chem. Phys. Lett. 1992, 200, 21.CrossRefGoogle Scholar
  81. (81).
    Boudon, S.; Wipff, G.; Maigret, B. J. Phys. Chem. 1990, 94, 6056.CrossRefGoogle Scholar
  82. (82).
    Guilbaud, P.; Wipff, G. J. Phys. Chem. 1993, 97, 5685.CrossRefGoogle Scholar
  83. (83).
    Colquhoun, H. M.; Stoddart, J. F.; Williams, D. J. Angew. Chem. Int. Ed. Engl. 1983, 25, 487.CrossRefGoogle Scholar
  84. (84).
    Gao, J.; Xia, X. Science 1992, 258, 631.CrossRefGoogle Scholar
  85. (85).
    Dang, L. X. J. Chem Phys. 1992, 96, 6970.CrossRefGoogle Scholar
  86. (86).
    Straatsma, T. P.; McCammon, J. A. Chem. Phys. Lett. 1991, 177, 433.CrossRefGoogle Scholar
  87. (87).
    Guenot, J.; Kollman, P. A. J. Comput. Chem. 1993, 14, 295.CrossRefGoogle Scholar
  88. (88).
    Tasaki, K.; McDonald, S.; Brady, J. W. J. Comput. Chem. 1993, 14, 278.CrossRefGoogle Scholar
  89. (89).
    Groth, P. Acta Chem. Scand. 1982, A36, 109.CrossRefGoogle Scholar
  90. (90).
    Dutton, P. J.; Fyles, T. M.; Suresh, V. V.; Fronczek, F. R.; Gandour, R. Can. J. Chem. 1993, 71, 241.CrossRefGoogle Scholar
  91. (92).
    Arduini, A.; Ghidini, E.; Ponchini, A.; Ungaro, R.; Andreetti, G. D.; Calestani, G.; Ugozzoli, F. J. Inclus. Phenom. 1988, 6, 119.CrossRefGoogle Scholar
  92. (93).
    Arduini, A.; Casnati, A.; Fabbi, M.; Minari, P.; Pochini, A.; Sicuri, A. R.; Ungaro, R. New Shapes for Selective Molecular Recognition from Calixarenes in “Supramolecular Chemistry”; Balzani, V. and Cola, L. D.; Kluwer, 1992, p. 31.Google Scholar
  93. (94).
    Ungaro, R.; Pochini, A.; Arduini, A. Complexation of Ions and Neutral Molecules by Functionalized Calixarenes in “Inclusion Phenomena and Molecular Recognition”; Atwood, J.; Plenum Press, New York, 1990. Calixarene-Based Cation Receptors and Carriers in reference 86, p. 127.Google Scholar
  94. (95).
    Arnaud-Neu, F.; Collins, E. M.; Deasy, M.; Ferguson, G.; Harris, S, J.; Kaitner, B.; Lough, A. J.; McKervey, M. A.; Marques, E.; Ruhl, B. L.; Schwing-Weill, M. J.; Seward, E. M. J. Am. Chem. Soc. 1989, 111, 8681.CrossRefGoogle Scholar
  95. (96).
    de-Namor, A. F. D.; de-Sueros, N. A.; McKervey, M. A.; Barrett, G.; Arnaud-Neu, F.; Schwing-Weill, M. J. J. Chem. Soc. Chem. Commun. 1991, 1546.Google Scholar
  96. (97).
    Schwing-Weill, M. J.; Arnaud-Neu, F.; McKervey, M. A. J. Phys. Org. Chem. 1992, 5, 496.CrossRefGoogle Scholar
  97. (98).
    Varnek, A. A.; Maya, A.; Landini, D.; Gamba, A.; Morosi, G.; Podda, G. J. Phys. Org. Chem. 1993, 6, 113.Google Scholar
  98. (99).
    Gokel, G. W. Chem. Soc. Rev. 1992, 39.Google Scholar
  99. (100).
    Tor, Y.; Libman, J.; Shanzer, A.; Lifson, S. J. Am. Chem. Soc. 1987, 109, 6517. Tor, Y.; Libman, J.; Shanzer, A.; Felder, C. E.; Lifson, S. J. Am. Chem. Soc. 1992, 114, 6661.CrossRefGoogle Scholar
  100. (101).
    Cobben, P. L. H. M.; Egberink, R. J. M.; Borner, J. G.; Bergveld, P.; Verboom, W.; Reinhoudt, D. N. J. Am. Chem. Soc. 1992, 114, 10573; Ting, Y.; Verboom, W.; Groenen, L. C.; van-Loon, J.-D.; Reinhoudt, D. N. J. Chem. Soc., Chem. Commun. 1990, 1432.Google Scholar
  101. (102).
    Libman, J.; Tor, Y.; Dayan, I.; Shanzer, A.; Lifson, S. Isr. J. Chem. 1992, 32, 31.Google Scholar
  102. (103).
    Varnek, A.; Wipff, G. Unpublished results Google Scholar
  103. (104).
    Sabbatini, N.; Guardigli, M.; Lehn, J.-M. Coord. Chem. Rev. 1993, 123, 201.CrossRefGoogle Scholar
  104. (105).
    Olsher, U.; Hankins, M. G.; Kim, Y. D.; Bartsch, R. A. J. Am. Chem. Soc. 1993, 115, 3370 and references cited therein.Google Scholar
  105. (106).
    Meier, W.; Bopp, P.; Probst, M. M.; Spohr, E.; Lin, J. I. J. Phys. Chem. 1990, 94, 4672.CrossRefGoogle Scholar
  106. (107).
    Karim, O. A.; Mc Cammon, J. A. J. Am. Chem. Soc. 1986, 108, 1762.CrossRefGoogle Scholar
  107. (108).
    Rashin, A. A. J. Phys. Chem. 1989, 93, 4664.CrossRefGoogle Scholar
  108. (109).
    Heinzinger, K. in “Ion and Molecules in Solution. Studies in Physical and Theoretical Chemistry”; Tanaka, N.; Ohtaki, H. Tamamushi, R.; Elsevier, Amsterdam, 1983, 61.Google Scholar
  109. (110).
    Marcus, Y. “Ion Solvation”. Chichester: Wiley, 1985.Google Scholar
  110. (111).
    Bünzli, J.-C.; Wessner, D. Coord. Chem. Rev. 1984, 60, 191.CrossRefGoogle Scholar
  111. (112).
    Bünzli, J. C. Complexes with Synthetic Ionophores. in “Handbook on the Physics and Chemistry of Rare Earths.”; Gschneidner, K. A.; Jr. Eyring, L.; Elsevier Science Publishers., 1987, 321.Google Scholar
  112. (113).
    Adachi, G.-Y.; Hirashima, Y. Macrocyclic Complexes of Lanthanide Ions in “Cation Binding by Macrocycles” Inoue, Y. Gokel, G.; M. Dekker, Inc., New York 1992, 701.Google Scholar
  113. (114).
    Dunitz, J. D.; Seiler, P. Acta Cryst. 1974, B30, 2750.Google Scholar
  114. (115).
    Sabbatini, N.; Perathoner, S.; Lattanzi, G.; Dellonte, S.; Balzani, V. J. Phys. Chem. 1987, 91, 6136; Yee, E. L.; Gansow, O. A.; Weaver, M. J. J. Am. Chem. Soc. 1980, 102, 2278.Google Scholar
  115. (116).
    Heinzinger, K.; Bopp, P.; Jancso, G. Acta Chim. Hung. 1986, 121, 27.Google Scholar
  116. (117).
    Brooks III, C. L.; Pettitt, B. M.; Karplus, M. J. Chem. Phys. 1985, 83, 5897.CrossRefGoogle Scholar
  117. (118).
    Smith, P. E.; Pettitt, B. M. J. Chem. Phys. 1991, 95, 8430.CrossRefGoogle Scholar
  118. (119).
    Cieplak, P.; Kollman, P. J. Chem. Phys. 1990, 92, 6761.CrossRefGoogle Scholar
  119. (120).
    van Gunsteren, W. F.; Berendsen, H. J. C. Angew. Chem. Int. Ed. 1990, 29, 992.CrossRefGoogle Scholar
  120. (121).
    Matthew, J. B. Ann. Rev. Biophys. Biophys. Chem. 1985, 14, 387.CrossRefGoogle Scholar
  121. (122).
    Berkowitz, M.; Karim, O. A.; McCammon, J. A.; Rossky, P. J. Chem. Phys. Lett. 1984, 105, 577.CrossRefGoogle Scholar
  122. (123).
    Bash, P. A.; Singh, U. C.; Langridge, R.; Kollman, P. A. Science 1987, 236, 564.CrossRefGoogle Scholar
  123. (124).
    Bash, P. A.; Field, M. J.; Karplus, M. J. Am. Chem. Soc. 1987, 109, 8092.CrossRefGoogle Scholar
  124. (125).
    Aqvist, J. J. Phys. Chem. 1990, 94, 8021.CrossRefGoogle Scholar
  125. (126).
    Aqvist, J. J. Mol. Struct. (THEOCHEM) 1992, 256, 135.CrossRefGoogle Scholar
  126. (127).
    Troxler, L.; Wipff, G. unpublished.Google Scholar
  127. (128).
    Danil de Namor, A. F.; Ghouseeini, L. J. Chem. Soc. Farad. Trans. I 1985, 81, 781.CrossRefGoogle Scholar
  128. (129).
    Cox, B. G.; Schneider, H. Pure Appl. Chem. 1989, 61, 171.CrossRefGoogle Scholar
  129. (130).
    Schneider, H.-J. Angew. Chem. Int. Ed. 1991, 30, 1417.CrossRefGoogle Scholar
  130. (131).
    Gelb, R. I. Zompa, J. Am. Chem. Soc., 1985, 107, 909. Gelb, R. I.; Schwartz, L. M.; Zompa, L. J. Inorg. Chem. 1986, 25, 1527.CrossRefGoogle Scholar
  131. (132).
    Morokuma, K. Acc. Chem. Res. 1977, 10, 294.CrossRefGoogle Scholar
  132. (133).
    Hartsough, D. S.; Merz, K. M. J. Am. Chem. Soc. 1993, 115, 6529.CrossRefGoogle Scholar
  133. (134).
    Dunitz, J. Crystal as Supramolecules in “Host-Guest Molecular Interactions: from Chemistry to Biology. CIBA Found. Symp. 158.”; Wiley Interscience Publ. 1991, 9; Kennard, O. Supramol. Chem. 1993, 1; 277.Google Scholar
  134. (135).
    Hancock, R. D. Acc. Chem. Res. 1990, 23, 253.CrossRefGoogle Scholar
  135. (136).
    Allured, V. S.; Kelly, C. M.; Landis, C. R. J. Am. Chem. Soc. 1991, 113, 1513.CrossRefGoogle Scholar
  136. (137).
    Smith, P. E.; Marlow, G. E.; Pettitt, B. M. J. Am. Chem. Soc. 1993, 115, 7493 and references cited therein.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1994

Authors and Affiliations

  • G. Wipff
    • 1
  • L. Troxler
    • 1
  1. 1.Institut de ChimieURA 422 CNRSStrasbourgFrance

Personalised recommendations