Advertisement

Modeling Interactions with Benzene: Aryl-Aryl, Cation-π, and Chaotrope-π

  • William L. Jorgensen
  • Daniel L. Severance
  • Erin M. Duffy
Part of the NATO ASI Series book series (ASIC, volume 426)

Abstract

The association of benzene with itself, urea, guanidinium ion, and tetramethylammonium ion has been studied in water via Monte Carlo statistical mechanics simulations. Benzene dimerization in chloroform and liquid benzene have also been considered as well as the association of urea with naphthalene in water. Calculations of potentials of mean force predict complexes to exist in each case at contact separations. The energetics and optimal structures for the gas-phase complexes have also been characterized. Differences with the solution structures are discussed along with general implications for host-guest chemistry.

Keywords

Interaction Energy TIP4P Water Optimal Interaction Free Energy Profile Guanidinium Chloride 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    (a) Williams, K.; Askew, B.; Ballester, P.; Buhr, C.; Jeong, K.-S., Jones, S.; Rebek, J., Jr. J. Am. Chem. Soc. 1989, 111, 1090.(b) Roteilo, V. M.; Viani, E. A.; Deslongchamps, G.; Murray, B. A.; Rebek, J., Jr. J. Am. Chem. Soc. 1993, 115, 797. (c) Goswami, S.; Hamilton, A. D.; Van Engen, D. J. Am. Chem. Soc. 1989, 111, 3425. (d) Zimmerman, S. C. Topics in Current Chem. 1993, 165, 71.CrossRefGoogle Scholar
  2. (2).
    (a) Burley, S. K.; Petsko, G. A. Science 1985, 229, 23. (b) Singh, J.; Thornton, J. M. FEBS Lett. 1985. 191, 1.CrossRefGoogle Scholar
  3. (3).
    Saenger, W. Principles of Nucleic Acid Structure; Springer-Verlag: New York, 1984.CrossRefGoogle Scholar
  4. (4).
    Burley, S. K.; Petsko, G. A. FEBS Lett. 1986, 203, 139.CrossRefGoogle Scholar
  5. (5).
    a) Dougherty, D. A.; Staufer, D. A. Science 1990, 250, 1558. (b) Sussman, J. L.; Harel, M.; Frolcw, F.; Oefner, C.; Goldman, A.; Toker, A.; Silman, I. Science 1991, 253/ 872.Google Scholar
  6. (6).
    Waksman, G.; Kominos, D.; Robertson, S. C.; Nalin, P.; Baltimore, D.; Birge, R. B.; Ccwburn, D.; Hanafusa, H.; Mayer, B. J.; Overduim, M.; Resh, M. D.; Rios, C. B.; Silverman, L.; Kuriyan, J. Nature 1992, 358, 646.CrossRefGoogle Scholar
  7. (7).
    Kumpf, R. A.; Dougherty, D. A. Science 1993, 261/ 0000. In press.Google Scholar
  8. (8).
    (a) Breslcw, R.; Guo, T. Proc. Natl. Acad. Sci. USA 1990, 87, 167. (b) Makhatadze, G. I.; Privalov, P. L. J. Mol. Biol. 1992, 226. 491.CrossRefGoogle Scholar
  9. (9).
    Duffy, E. M.; Kcwalczyk, P. J.; Jorgensen, W. L. J. Am. Chem. Soc. 1993, 115, 0000. In press.Google Scholar
  10. (10).
    Jorgensen, W. L.; Severance, D. L. J. Am. Chem. Soc. 1990, 112. 4768.CrossRefGoogle Scholar
  11. (11).
    Blake, J. F.; Jorgensen, W. L. J. Am. Chem. Soc. 1990, 112, 7269.CrossRefGoogle Scholar
  12. (12).
    Duffy, E. M.; Severance, D. L.; Jorgensen, W. L. Isr. J. Chem. 1993, 00, 0000. In press.Google Scholar
  13. (13).
    Jorgensen, W. L.; Tirado-Rives, J. J. Am. Chem. Soc. 1988, 110. 1657.CrossRefGoogle Scholar
  14. (14).
    Jorgensen, W. L.; Gao, J. J. Phys. Chem. 1988, 90, 2174.Google Scholar
  15. (15).
    Jorgensen, W. L.; Briggs, J. M.; Contreras, M. L. J. Phys. Chem. 1990, 94, 1683.CrossRefGoogle Scholar
  16. (16).
    Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.; Klein, M. L. J. Chem. Phys. 1983, 79, 926.Google Scholar
  17. (17).
    Jorgensen, W. L. BOSS Version 3.4. 1993, Yale University, New Haven, Connecticut, USA.Google Scholar
  18. (18).
    Steed, J. M.; Dixon, T. A.; Klemperer, W. J. Chem. Phys. 1979, 70, 4940.Google Scholar
  19. (19).
    Graver, J. R.; Walters, E. A.; Hui, E. T. J. Phys. Chem. 1987, 91, 3233.CrossRefGoogle Scholar
  20. (20).
    Karlstran, G.; Linse, P.; Wallqvist, A.; Jonsson, B. J. Am. Chem. Soc. 1983, 105, 3777.CrossRefGoogle Scholar
  21. (21).
    Suzuki, S.; Green, P. G.; Bumgarner, R. E.; Dasgupta, S.; Goddard, W. A. III, Blake, G. A. Science 1992, 257, 942.CrossRefGoogle Scholar
  22. (22).
    Atwood, J. L.; Hamada, F.; Robinson, K. D.; Orr, G. W.; Vincent, R. L. Nature 1991, 349, 683.CrossRefGoogle Scholar
  23. (23).
    Rodham, D. A.; Suzuki, S.; Suenram, R. D.; Lovas, F. J.; Dasgupta, S.; Goddard, W. A. III; Blake, G. A. Nature 1993, 362, 735.CrossRefGoogle Scholar
  24. (24).
    Morokuma, K.; Kitaura, K. in Molecular Interactions. Ratajcczak, H.; Orville-Thomas, W. J., Eds.: Wiley, New York, 1980; p 21.Google Scholar
  25. (25).
    Tucker, E. E.; Lane, E. H.; Christian, S. D. J. Solution Chem. 1981, 10, 1.CrossRefGoogle Scholar
  26. (26).
    Meot-Ner, M.; Deakyne, C. A. J. Am. Chem. Soc. 1985, 107. 469.CrossRefGoogle Scholar
  27. (27).
    Robinson, D. R.; Jencks, W. P. J. Am. Chem. Soc. 1965, 87, 2462.CrossRefGoogle Scholar
  28. (28).
    Roseman, M.; Jencks, W. P. J. Am. Chem. Soc. 1975, 97, 631.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1994

Authors and Affiliations

  • William L. Jorgensen
    • 1
  • Daniel L. Severance
    • 1
  • Erin M. Duffy
    • 1
  1. 1.Department of ChemistryYale UniversityNew HavenUSA

Personalised recommendations