Skip to main content

Non-Invasive Measurement of Temperature Changes In Tethered Flying Blowflies By Thermal Imaging

  • Chapter
Advances in Signal Processing for Nondestructive Evaluation of Materials

Part of the book series: NATO ASI Series ((NSSE,volume 262))

  • 261 Accesses

Abstract

The changes in temperature occurring in the body of a flying blowfly are measured with the non-invasive technique of thermal imaging. It is found that during rest the temperatures of the three main body compartments, i.e. head, thorax and abdomen, approximately equal the ambient temperature. Upon flight onset the thorax temperature increases about exponentially, with a time constant ≈ 30 s. In steady flight, the thorax temperature is ≈ 5 °C higher than the ambient temperature (≈ 25 °C). After flight, the temperature of the thorax decreases, again about exponentially, with a time constant of ≈ 50 s. A three compartment model of the insect body allows a quantitative description of these temperature changes, thus yielding values for the blowfly’s thermal parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bartholomew GA (1981) A matter of size: an examination of endothermy in insects and terrestrial vertebrates. In: Insect Thermoregulation ( Heinrich B, ed.), pp 45–78. John Wiley & Sons: New York

    Google Scholar 

  • Bartholomew GA, Lighton JRB (1986) Endothermy and energy metabolism of a giant tropical fly, Pantophtalmus tabaninus Thunberg. J Comp Physiol B 156: 461–467

    Article  Google Scholar 

  • Casey TM (1992) Biophysical ecology and heat exchange in insects. Amer Zool 32: 225–237

    Google Scholar 

  • Cena K, Clark JA (1972) Effect of solar regulation on temperatures of working honey bees. Nature New Biology 236: 222–223

    CAS  Google Scholar 

  • Chappell MA, Morgan KR (1987) Temperature regulation, endothermy, resting metabolism, and flight energetics of tachinid flies (Nowickia sp.). Physiol Zool 60: 550–559

    Google Scholar 

  • Digby PSB (1955) Factors affecting the temperature excess of insects in sunshine. J Exp Biol 32: 279–298

    Google Scholar 

  • Goller F, Esch HE (1991) Oxygen consumption and flight muscle acitivity during heating in workers and drones of Apis mellifera. J Comp Physiol B 161: 61–67

    Article  Google Scholar 

  • Goller F, Esch HE, Heinrich B (1991) How do bees shiver? Naturwissenschaften 78: 325–328

    Article  Google Scholar 

  • Heinrich B (1974) Thermoregulation in endothermic insects. Science 185: 747–756

    Article  CAS  Google Scholar 

  • Heinrich B (1979) Bumblebee Economics. Harvard University Press: Cambridge Mass

    Google Scholar 

  • Heinrich B (1980a) Mechanisms of body-temperature regulation in honeybees, Apis mellifera. I. Regulation of head temperature. J Exp Biol 85: 61–72

    Google Scholar 

  • Heinrich B (1980b) Mechanisms of body-temperature regulation in honeybees, Apis mellifera. II. Regulation of thoracic temperature at high air temperatures. J Exp Biol 85: 73–87

    Google Scholar 

  • Heinrich B (1981) Ecological and evolutionary perspectives. In: Insect Thermoregulation ( Heinrich B, ed.), pp 235–302. John Wiley & Sons: New York

    Google Scholar 

  • Heinrich B (1993) The Hot-Blooded Insects. Strategies and Mechanisms of Thermoregulation. Springer: Berlin

    Google Scholar 

  • Heinrich B, Pantle C (1975) Thermoregulation in small flies (Syrphus sp.): basking and shivering. J Exp Biol 62: 599–610

    Google Scholar 

  • Morgan K, Heinrich B (1987) Temperature regulation in bee- and wasp-mimicking syrphid flies. J Exp Biol 133: 59–71

    Google Scholar 

  • Nachtigall W, Rothe U, Feller P, Jungmann R (1989) Flight of the honey bee. III. Flight metabolic power calculated from gas analysis, thermoregulation and fuel consumption. J Comp Physiol B 158: 729–737

    Google Scholar 

  • Schmaranzer S (1983) Thermovision bei trinkenden und tanzenden Honigbienen (Apis mellifera carnicca). Verh Dtsch Zool Ges 76: 319

    Google Scholar 

  • Schmaranzer S, Stabentheiner A (1988) Variability of the thermal behavior of honeybees on a feeding place. J Comp Physiol B 158: 135–141

    Article  Google Scholar 

  • Stabentheiner A, Schmaranzer S (1987) Thermographic determination of body temperatures in honey bees and hornets: calibration and applications. Thermology 2: 563–572 (1987)

    Google Scholar 

  • Stabentheiner A, Schamaranzer S (1988) Flight-related thermobiological investigations of honeybees (Apis mellifera carnicca). In: The Flying Honeybee (Nachtigall W, ed), BIONA-report 6, pp 89–102. Gustav Fischer, Stuttgart

    Google Scholar 

  • Stone GN, Willmer PG (1989) Endothermy and temperature regulation in bees: a critique of ‘grab and stab’ measurement of body temperature. J Exp Biol 143: 211–223

    Google Scholar 

  • Surholt B, Greive H, Baal T, Bertsch A (1990) Non-shivering thermogenesis in asynchronous flight muscles of bumblebees? Comparative studies on males of Bombus terristris, Xylocopa sulcatipes and Acherontia atropos. Comp Biochem Physiol 97A: 493–499

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Stavenga, D.G., Tinbergen, J., Schwering, P.B.W. (1994). Non-Invasive Measurement of Temperature Changes In Tethered Flying Blowflies By Thermal Imaging. In: Maldague, X.P.V. (eds) Advances in Signal Processing for Nondestructive Evaluation of Materials. NATO ASI Series, vol 262. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1056-3_37

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1056-3_37

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4459-2

  • Online ISBN: 978-94-011-1056-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics