Skip to main content

Time-scale analyses and self-similar stochastic processes

  • Chapter
Wavelets and Their Applications

Part of the book series: NATO ASI Series ((ASIC,volume 442))

Abstract

A number of different physical situations (e.g.,“1 /f noise,” turbulence, texture analysis,… ) give rise to fractal or fractal-like signals, modeled as samples of self-similar processes. This motivates the development of specific methods for characterizing self-similarity structures in signals and for efficiently estimating the corresponding scaling laws. The recently introduced techniques of time-scale analysis (wavelet transforms and bilinear generalizations) offer such a possibility, especially in the case of locally self-similar processes, i.e., those for which scaling laws are time-dependent. In this respect, basics of linear and bilinear time-scale theories will be reviewed in connection with more classical methods. Starting from idealizations such as white noise, Poisson process, or (fractional) Brownian motion and variations thereof, we will show what advantages can be gained from time-scale approaches, either for obtaining almost Karhunen-Loève (doubly orthogonal) representations via orthogonal wavelet bases, or for defining general classes of estimators (aimed at scaling exponents) via bilinear time-scale representations which generalize the usual Wigner-Ville distribution.

Part of the material reported here is based upon joint works with P. Abry and P. Gonçalvès, who are gratefully acknowledged for stimulating and fruitful discussions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. P. Abry and P. Flandrin, 1992. In preparation.

    Google Scholar 

  2. P. Abry, P. Gonçalvès, and P. Flandrin. Wavelet-based spectral analysis of 1 /f processes. In IEEE Int. Conf. on Acoust., Speech and Signal Proc. ICASSP-93, pages III.237–III.240, Minneapolis, MN, 1993.

    Google Scholar 

  3. R.A. Altes. Wide-band, proportional-bandwidth Wigner-Ville analysis. IEEE Trans. on Acoust., Speech and Signal Proc., ASSP-38(6):1005–1012, 1990.

    Article  Google Scholar 

  4. A. Arnéodo, G. Grasseau, and M. Holschneider. Wavelet transform analysis of invariant measures of some dynamical systems. In J.M. Combes, A. Grossmann, and Ph. Tchamitchian, editors, Wavelets, pages 182–196. Springer-Verlag, 1989.

    Google Scholar 

  5. E. Bacry, A. Arnéodo, U. Frisch, Y. Gagne, and E. Hopfinger. Wavelet analysis of fully developed turbulence data and measurement of scaling exponents. In O. Métais and M. Lesieur, editors, Turbulence and Coherent Structures, pages 203–215. Kluwer, 1991.

    Google Scholar 

  6. M. Basseville, A. Benveniste, K.C. Chou, S.A. Golden, R. Nikoukah, and A.S. Willsky. Modeling and estimation of multiresolution stochastic processes. IEEE Trans. on Info. Theory, IT-38(2):766–784, 1992.

    Article  Google Scholar 

  7. A. Benassi, S. Jaffard, and D. Roux. Module de continuité des champs aléatoires Gaussiens étudiés au moyen d’ondelettes appropriées. Preprint, 1992.

    Google Scholar 

  8. J. Bertrand and P. Bertrand. Time-frequency representations of broadband signals. In IEEE Int. Conf. on Acoust., Speech and Signal Proc. ICASSP-88, pages 2196–2199, New York, NY, 1988.

    Google Scholar 

  9. S. Cambanis and E. Masry. Wavelet approximation of deterministic and random signals: Convergence properties and rates. Technical Report 352, Center for Stochastic Processes, Univ. of North Carolina, 1991.

    Google Scholar 

  10. M. Carbon. Introduction aux processus self-similaires, 1991.

    Google Scholar 

  11. A. Cohen, J. Froment, and J. Istas. Analyse multirésolution des signaux aléatoires. C.R. Acad. Sc. Paris, 312:567–570, 1991.

    MathSciNet  MATH  Google Scholar 

  12. L. Cohen. Time-frequency distribution—A review. Proc. IEEE, 77(7):941–981, 1989.

    Article  Google Scholar 

  13. J.M. Combes, A. Grossmann, and Ph. Tchamitchian, editors. Wavelets: Time-Frequency Methods and Phase Space. Springer-Verlag, New York, 2, 1989.

    MATH  Google Scholar 

  14. I. Daubechies. Orthonormal bases of compactly supported wavelets. Comm. Pure Appl. Math., 41:909–996, October 1988.

    Article  MathSciNet  MATH  Google Scholar 

  15. K. Falconer. Fractal Geometry. J. Wiley and Sons, 1990.

    Google Scholar 

  16. J. Feder. Fractals. Plenum Press, 1988.

    Google Scholar 

  17. P. Flandrin. On the spectrum of fractional Brownian motions. IEEE Trans. on Info. Theory, IT-35(1):197–199, 1989.

    Article  MathSciNet  Google Scholar 

  18. P. Flandrin. Some aspects of nonstationary signal processing with emphasis on time-frequency and time-scale methods. In A. Grossmann, and Ph. Tchamitchian, editors. Wavelets: Time-Frequency Methods and Phase Space. Springer-Verlag, New York, 2, 1989 Combes et al. [13], pages 68–98.

    Google Scholar 

  19. P. Flandrin. Time-dependent spectra for nonstationary stochastic processes. In G. Longo and B. Picinbono, editors, Time and frequency representation of signals and systems, pages 69–124. Springer-Verlag, 1989.

    Google Scholar 

  20. P. Flandrin. Scale-invariant Wigner spectra and self-similarity. In L. Torres, E. Masgrau, and M.A. Lagunas, editors, Signal Processing V: Theories and Applications, pages 149–152. Elsevier, 1990.

    Google Scholar 

  21. P. Flandrin. Wavelet analysis and synthesis of fractional Brownian motion. IEEE Trans. on Info. Theory, IT-38(2):910–917, 1992.

    Article  MathSciNet  Google Scholar 

  22. P. Flandrin and O. Rioul. Affine smoothing of the Wigner-Ville distribution. In IEEE Int. Conf. on Acoust., Speech and Signal Proc. ICASSP-90, pages 2455–2458, Albuquerque, NM, 1990.

    Google Scholar 

  23. N. Gache, P. Flandrin, and D. Garreau. Fractal dimension estimators for fractional Brownian motions. In IEEE Int. Conf. on Acoust., Speech and Signal Proc. ICASSP-91, pages 3557–3560, Toronto, 1991.

    Google Scholar 

  24. P. Gonçalvès and P. Flandrin. Bilinear time-scale analysis applied to local scaling exponents estimation. In Y. Meyer and S. Roques, editors, Progress in Wavelet Analysis and Applications, pages 271–276. Editions Frontieres, 1992.

    Google Scholar 

  25. P. Gonçalvès and P. Flandrin. Scaling exponents estimation from time-scale energy distributions. In IEEE Int. Conf. on Acoust., Speech and Signal Proc. ICASSP-92, pages V.157–V.160, San Francisco, CA, 1992.

    Google Scholar 

  26. F. Hlawatsch and G.F. Boudreaux-Bartels. Linear and quadratic time-frequency signal representations. IEEE Signal Proc. Mag., 9(2):21–67, 1992.

    Article  Google Scholar 

  27. J. Istas. Coefficients d’ondelettes d’un processus Gaussien stationnaire. C.R. Acad. Sc. Paris, 312:893–896, 1991.

    MathSciNet  MATH  Google Scholar 

  28. D.H. Johnson and A.R. Kumar. Modeling and analyzing fractal point processes. In IEEE Int. Conf. on Acoust., Speech and Signal Proc. ICASSP-90, pages 1353–1356, Albuquerque, NM, 1990.

    Google Scholar 

  29. J.-P. Kahane. Some random series of functions. Cambridge University Press, 2, 1985.

    Google Scholar 

  30. P. Lévy. Le mouvement Brownien. Mém. Sc. Math., 126:1–81, 1954.

    Google Scholar 

  31. S.B. Lowen and M.C. Teich. Power-law shot noise. IEEE Trans. on Info. Theory, IL-36(6):1302–1318, 1990.

    Article  Google Scholar 

  32. S.G. Mallat. A theory for multiresolution signal decomposition: The wavelet representation. IEEE Trans. on Pattern Anal. and Machine Intell., PAMI-11(7):674–693, 1989.

    Article  Google Scholar 

  33. B.B. Mandelbrot and J.W. van Ness. Fractional Brownian motions, fractional noises and applications. SIAM Rev., 10(4):422–437, 1968.

    Article  MathSciNet  MATH  Google Scholar 

  34. N.M. Marinovich. The Wigner distribution and the ambiguity function: generalizations, enhancement, compression and some applications. PhD thesis, The City University of New York, 1986.

    Google Scholar 

  35. W. Martin and P. Flandrin. Wigner-Ville spectral analysis of nonsta-tionary processes. IEEE Trans. on Acoust., Speech and Signal Proc., ASSP-33(6):1461–1470, 1985.

    Article  Google Scholar 

  36. Y. Meyer. Ondelettes et Opérateurs—I. Ondelettes. Hermann, 1990.

    Google Scholar 

  37. J.F. Muzy, E. Bacry, and A. Arnéodo. Wavelets and multifractal formalism for singular signals: Application to turbulence data. Phys. Rev. Lett., 67(25):3515–3518, 1991.

    Article  Google Scholar 

  38. A. Papandreou, F. Haiwatsch, and G.F. Boudreaux-Bartels. A unified framework for the Bertrand distribution and the Altes distribution: The new hyperbolic class of quadratic time-frequency distributions. In IEEE SP Int. Symp. on Time-Frequency and Time-Scale Analysis, pages 27–30, Victoria, BC, 1992.

    Google Scholar 

  39. H.O. Peitgen and D. Saupe, editors. The Science of Fractal Images. Springer-Verlag, 1988.

    Google Scholar 

  40. J. Ramanathan and O. Zeitouni. On the wavelet transform of fractional Brownian motion. IEEE Trans. on Info. Theory, IT-37(4):1156–1158, 1991.

    Article  MathSciNet  Google Scholar 

  41. O. Rioul and P. Flandrin. Time-scale energy distributions—A general class extending wavelet transforms. IEEE Trans. on Signal Proc., SP-40(7):1746–1757, 1992.

    Article  Google Scholar 

  42. A.H. Tewfik and M. Kim. Correlation structure of the discrete wavelet coefficients of fractional Brownian motions. IEEE Trans. on Info. Theory, IT-38(2):904–909, 1992.

    Article  MathSciNet  Google Scholar 

  43. M. Vergassola and U. Frisch. Wavelet transforms of self-similar processes. Physica D, 54:58–64, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  44. N. Wiener. Nonlinear Problems in Random Theory. MIT Press, Cambridge, 1958.

    MATH  Google Scholar 

  45. G.W. Wornell. A Karhunen-Loève-like expansion for 1 /f processes via wavelets. IEEE Trans. on Info. Theory, IT-36(4):859–861, 1990.

    Article  MathSciNet  Google Scholar 

  46. A.M. Yaglom. Correlation Theory of Stationary and Related Random Functions. Springer-Verlag, 1986.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Flandrin, P. (1994). Time-scale analyses and self-similar stochastic processes. In: Byrnes, J.S., Byrnes, J.L., Hargreaves, K.A., Berry, K. (eds) Wavelets and Their Applications. NATO ASI Series, vol 442. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1028-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1028-0_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4448-6

  • Online ISBN: 978-94-011-1028-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics